Bubblegrams reveal the inner body of bacteriophage φKZ - PubMed (original) (raw)
Bubblegrams reveal the inner body of bacteriophage φKZ
Weimin Wu et al. Science. 2012.
Abstract
Dense packing of macromolecules in cellular compartments and higher-order assemblies makes it difficult to pick out even quite large components in electron micrographs, despite nominally high resolution. Immunogold labeling and histochemical procedures offer ways to map certain components but are limited in their applicability. Here, we present a differential mapping procedure, based on the physical principle of protein's greater sensitivity to radiation damage compared with that of nucleic acid.
Figures
Figure 1
Cryo-electron micrographs of purified ϕKZ virions: (A) initial low-dose exposure; (B) subsequent exposure of the same field, with bubbling in radiation-damaged virions. (C) 3D reconstruction of the ϕKZ capsid viewed along the axis of 5-fold symmetry that passes through the portal. The capsid has T=27 icosahedral symmetry (4). The centers of all hexons on one icosahedral facet are marked with red dots. Hexons in the ring of five, on one of which the inner body (in magenta) is anchored, are colored green. The symmetry-related hexons on the other side of the capsid are in pale green. Each of these hexons lie on a facet edge, connecting two vertices. The central axis of the inner body passes through the center of capsid. (D) Central section of the ϕKZ head sampled in the plane in which the inner body axis lies. This view illustrates the tilt of the inner body relative to the portal axis and the offsetting of its point of contact with the capsid from the portal vertex. (E) Multi-tiered structure of the inner body shown in surface rendering (left, magenta) and central grayscale section (right). The structures shown in (C) and (E) were 6-fold rotationally averaged (justified by the angular power spectra analysis in Figure 3s): the structure shown in (D) was not.
Similar articles
- Myoviridae bacteriophages of Pseudomonas aeruginosa: a long and complex evolutionary pathway.
Krylov V, Pleteneva E, Bourkaltseva M, Shaburova O, Volckaert G, Sykilinda N, Kurochkina L, Mesyanzhinov V. Krylov V, et al. Res Microbiol. 2003 May;154(4):269-75. doi: 10.1016/S0923-2508(03)00070-6. Res Microbiol. 2003. PMID: 12798231 - Cryo-EM study of the Pseudomonas bacteriophage phiKZ.
Fokine A, Battisti AJ, Bowman VD, Efimov AV, Kurochkina LP, Chipman PR, Mesyanzhinov VV, Rossmann MG. Fokine A, et al. Structure. 2007 Sep;15(9):1099-104. doi: 10.1016/j.str.2007.07.008. Structure. 2007. PMID: 17850749 - A three-dimensional cryo-electron microscopy structure of the bacteriophage phiKZ head.
Fokine A, Kostyuchenko VA, Efimov AV, Kurochkina LP, Sykilinda NN, Robben J, Volckaert G, Hoenger A, Chipman PR, Battisti AJ, Rossmann MG, Mesyanzhinov VV. Fokine A, et al. J Mol Biol. 2005 Sep 9;352(1):117-24. doi: 10.1016/j.jmb.2005.07.018. J Mol Biol. 2005. PMID: 16081102 - Phage phiKZ-The First of Giants.
Krylov V, Bourkaltseva M, Pleteneva E, Shaburova O, Krylov S, Karaulov A, Zhavoronok S, Svitich O, Zverev V. Krylov V, et al. Viruses. 2021 Jan 20;13(2):149. doi: 10.3390/v13020149. Viruses. 2021. PMID: 33498475 Free PMC article. Review. - Effects of radiation damage in studies of protein-DNA complexes by cryo-EM.
Mishyna M, Volokh O, Danilova Y, Gerasimova N, Pechnikova E, Sokolova OS. Mishyna M, et al. Micron. 2017 May;96:57-64. doi: 10.1016/j.micron.2017.02.004. Epub 2017 Feb 21. Micron. 2017. PMID: 28262565 Review.
Cited by
- Visualization of uncorrelated, tandem symmetry mismatches in the internal genome packaging apparatus of bacteriophage T7.
Guo F, Liu Z, Vago F, Ren Y, Wu W, Wright ET, Serwer P, Jiang W. Guo F, et al. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6811-6. doi: 10.1073/pnas.1215563110. Epub 2013 Apr 11. Proc Natl Acad Sci U S A. 2013. PMID: 23580619 Free PMC article. - Exploiting radiation damage to map proteins in nucleoprotein complexes: the internal structure of bacteriophage T7.
Cheng N, Wu W, Watts NR, Steven AC. Cheng N, et al. J Struct Biol. 2014 Mar;185(3):250-6. doi: 10.1016/j.jsb.2013.12.004. Epub 2013 Dec 15. J Struct Biol. 2014. PMID: 24345345 Free PMC article. - Characterization of the genome, proteome, and structure of yersiniophage ϕR1-37.
Skurnik M, Hyytiäinen HJ, Happonen LJ, Kiljunen S, Datta N, Mattinen L, Williamson K, Kristo P, Szeliga M, Kalin-Mänttäri L, Ahola-Iivarinen E, Kalkkinen N, Butcher SJ. Skurnik M, et al. J Virol. 2012 Dec;86(23):12625-42. doi: 10.1128/JVI.01783-12. Epub 2012 Sep 12. J Virol. 2012. PMID: 22973030 Free PMC article. - Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages.
Lood C, Danis-Wlodarczyk K, Blasdel BG, Jang HB, Vandenheuvel D, Briers Y, Noben JP, van Noort V, Drulis-Kawa Z, Lavigne R. Lood C, et al. Environ Microbiol. 2020 Jun;22(6):2165-2181. doi: 10.1111/1462-2920.14979. Epub 2020 Mar 25. Environ Microbiol. 2020. PMID: 32154616 Free PMC article. - Capsids and Genomes of Jumbo-Sized Bacteriophages Reveal the Evolutionary Reach of the HK97 Fold.
Hua J, Huet A, Lopez CA, Toropova K, Pope WH, Duda RL, Hendrix RW, Conway JF. Hua J, et al. mBio. 2017 Oct 17;8(5):e01579-17. doi: 10.1128/mBio.01579-17. mBio. 2017. PMID: 29042498 Free PMC article.
References
- Mesyanzhinov VV, et al. J. Mol. Biol. 2002;317:1. - PubMed
- Krylov VN, et al. Can. J. Microbiol. 1984;30:758. - PubMed
- Black LW, Thomas JA. In: Viral Molecular Machines. Rossmann MG, Rao V, editors. Springer; New York: 2011. pp. 469–488.
- Fokine A, et al. Structure. 2007;15:1099. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- AI11676/AI/NIAID NIH HHS/United States
- R21 AI011676/AI/NIAID NIH HHS/United States
- Z01 AR027015-13/ImNIH/Intramural NIH HHS/United States
- Z01 AR027015/ImNIH/Intramural NIH HHS/United States
- R01 AI011676/AI/NIAID NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources