Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser - PubMed (original) (raw)
. 2012 Jan 25;481(7382):488-91.
doi: 10.1038/nature10721.
Duncan Ryan, Richard A London, Michael Purvis, Felicie Albert, James Dunn, John D Bozek, Christoph Bostedt, Alexander Graf, Randal Hill, Stefan P Hau-Riege, Jorge J Rocca
Affiliations
- PMID: 22281598
- DOI: 10.1038/nature10721
Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser
Nina Rohringer et al. Nature. 2012.
Abstract
Since the invention of the laser more than 50 years ago, scientists have striven to achieve amplification on atomic transitions of increasingly shorter wavelength. The introduction of X-ray free-electron lasers makes it possible to pump new atomic X-ray lasers with ultrashort pulse duration, extreme spectral brightness and full temporal coherence. Here we describe the implementation of an X-ray laser in the kiloelectronvolt energy regime, based on atomic population inversion and driven by rapid K-shell photo-ionization using pulses from an X-ray free-electron laser. We established a population inversion of the Kα transition in singly ionized neon at 1.46 nanometres (corresponding to a photon energy of 849 electronvolts) in an elongated plasma column created by irradiation of a gas medium. We observed strong amplified spontaneous emission from the end of the excited plasma. This resulted in femtosecond-duration, high-intensity X-ray pulses of much shorter wavelength and greater brilliance than achieved with previous atomic X-ray lasers. Moreover, this scheme provides greatly increased wavelength stability, monochromaticity and improved temporal coherence by comparison with present-day X-ray free-electron lasers. The atomic X-ray lasers realized here may be useful for high-resolution spectroscopy and nonlinear X-ray studies.
Comment in
- Laser science: Even harder X-rays.
Marangos J. Marangos J. Nature. 2012 Jan 25;481(7382):452-3. doi: 10.1038/481452a. Nature. 2012. PMID: 22281590 No abstract available.
Similar articles
- Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser.
Yoneda H, Inubushi Y, Nagamine K, Michine Y, Ohashi H, Yumoto H, Yamauchi K, Mimura H, Kitamura H, Katayama T, Ishikawa T, Yabashi M. Yoneda H, et al. Nature. 2015 Aug 27;524(7566):446-9. doi: 10.1038/nature14894. Nature. 2015. PMID: 26310765 - X-ray lasers from Inner-shell transitions pumped by the Free-electron laser.
Zhao J, Dong QL, Wang SJ, Zhang L, Zhang J. Zhao J, et al. Opt Express. 2008 Mar 17;16(6):3546-59. doi: 10.1364/oe.16.003546. Opt Express. 2008. PMID: 18542447 - Gain dynamics of inner-shell vacancy states pumped by high-intensity XFEL in Mg, Al and Si.
Heo J, Kim Y, Yun G, Kim DE. Heo J, et al. Opt Express. 2023 Jul 31;31(16):26948-26957. doi: 10.1364/OE.495095. Opt Express. 2023. PMID: 37710543 - Application of femtosecond-laser induced nanostructures in optical memory.
Shimotsuma Y, Sakakura M, Miura K, Qiu J, Kazansky PG, Fujita K, Hirao K. Shimotsuma Y, et al. J Nanosci Nanotechnol. 2007 Jan;7(1):94-104. J Nanosci Nanotechnol. 2007. PMID: 17455477 Review. - Application of Boltzmann kinetic equations to model X-ray-created warm dense matter and plasma.
Ziaja B, Bekx JJ, Masek M, Medvedev N, Lipp V, Saxena V, Stransky M. Ziaja B, et al. Philos Trans A Math Phys Eng Sci. 2023 Aug 21;381(2253):20220216. doi: 10.1098/rsta.2022.0216. Epub 2023 Jul 3. Philos Trans A Math Phys Eng Sci. 2023. PMID: 37393933 Free PMC article. Review.
Cited by
- The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source.
Ferguson KR, Bucher M, Bozek JD, Carron S, Castagna JC, Coffee R, Curiel GI, Holmes M, Krzywinski J, Messerschmidt M, Minitti M, Mitra A, Moeller S, Noonan P, Osipov T, Schorb S, Swiggers M, Wallace A, Yin J, Bostedt C. Ferguson KR, et al. J Synchrotron Radiat. 2015 May;22(3):492-7. doi: 10.1107/S1600577515004646. Epub 2015 Apr 17. J Synchrotron Radiat. 2015. PMID: 25931058 Free PMC article. - Generation of intense phase-stable femtosecond hard X-ray pulse pairs.
Zhang Y, Kroll T, Weninger C, Michine Y, Fuller FD, Zhu D, Alonso-Mori R, Sokaras D, Lutman AA, Halavanau A, Pellegrini C, Benediktovitch A, Yabashi M, Inoue I, Inubushi Y, Osaka T, Yamada J, Babu G, Salpekar D, Sayed FN, Ajayan PM, Kern J, Yano J, Yachandra VK, Yoneda H, Rohringer N, Bergmann U. Zhang Y, et al. Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2119616119. doi: 10.1073/pnas.2119616119. Epub 2022 Mar 15. Proc Natl Acad Sci U S A. 2022. PMID: 35290124 Free PMC article. - Ultrafast dynamics of spin and orbital correlations in quantum materials: an energy- and momentum-resolved perspective.
Cao Y, Mazzone DG, Meyers D, Hill JP, Liu X, Wall S, Dean MPM. Cao Y, et al. Philos Trans A Math Phys Eng Sci. 2019 May 20;377(2145):20170480. doi: 10.1098/rsta.2017.0480. Philos Trans A Math Phys Eng Sci. 2019. PMID: 30929631 Free PMC article. - Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser.
Gorobtsov OY, Mukharamova N, Lazarev S, Chollet M, Zhu D, Feng Y, Kurta RP, Meijer JM, Williams G, Sikorski M, Song S, Dzhigaev D, Serkez S, Singer A, Petukhov AV, Vartanyants IA. Gorobtsov OY, et al. Sci Rep. 2018 Feb 2;8(1):2219. doi: 10.1038/s41598-018-19793-1. Sci Rep. 2018. PMID: 29396400 Free PMC article. - Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes.
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Bergmann U, et al. Nat Rev Phys. 2021 Apr;3(4):264-282. doi: 10.1038/s42254-021-00289-3. Epub 2021 Mar 19. Nat Rev Phys. 2021. PMID: 34212130 Free PMC article.
References
- Opt Lett. 1983 Nov 1;8(11):551-3 - PubMed
- Phys Rev Lett. 1986 Dec 8;57(23):2939-2942 - PubMed
- Nature. 2010 Jul 1;466(7302):56-61 - PubMed
- Opt Express. 2008 Mar 17;16(6):3546-59 - PubMed
- Phys Rev Lett. 1985 Oct 21;55(17):1753-1756 - PubMed
Publication types
LinkOut - more resources
Full Text Sources