On the Use of Gene Ontology Annotations to Assess Functional Similarity among Orthologs and Paralogs: A Short Report - PubMed (original) (raw)

On the Use of Gene Ontology Annotations to Assess Functional Similarity among Orthologs and Paralogs: A Short Report

Paul D Thomas et al. PLoS Comput Biol. 2012.

Abstract

A recent paper (Nehrt et al., PLoS Comput. Biol. 7:e1002073, 2011) has proposed a metric for the "functional similarity" between two genes that uses only the Gene Ontology (GO) annotations directly derived from published experimental results. Applying this metric, the authors concluded that paralogous genes within the mouse genome or the human genome are more functionally similar on average than orthologous genes between these genomes, an unexpected result with broad implications if true. We suggest, based on both theoretical and empirical considerations, that this proposed metric should not be interpreted as a functional similarity, and therefore cannot be used to support any conclusions about the "ortholog conjecture" (or, more properly, the "ortholog functional conservation hypothesis"). First, we reexamine the case studies presented by Nehrt et al. as examples of orthologs with divergent functions, and come to a very different conclusion: they actually exemplify how GO annotations for orthologous genes provide complementary information about conserved biological functions. We then show that there is a global ascertainment bias in the experiment-based GO annotations for human and mouse genes: particular types of experiments tend to be performed in different model organisms. We conclude that the reported statistical differences in annotations between pairs of orthologous genes do not reflect differences in biological function, but rather complementarity in experimental approaches. Our results underscore two general considerations for researchers proposing novel types of analysis based on the GO: 1) that GO annotations are often incomplete, potentially in a biased manner, and subject to an "open world assumption" (absence of an annotation does not imply absence of a function), and 2) that conclusions drawn from a novel, large-scale GO analysis should whenever possible be supported by careful, in-depth examination of examples, to help ensure the conclusions have a justifiable biological basis.

PubMed Disclaimer

Conflict of interest statement

PDT, VW and JAB are funded in part by grants to maintain model organism databases.

Similar articles

Cited by

References

    1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–29. - PMC - PubMed
    1. Consortium GO. The Gene Ontology in 2010: extensions and refinements. Nucleic Acids Res. 2009;38:D331–335. - PMC - PubMed
    1. Nehrt NL, Clark WT, Radivojac P, Hahn MW. Testing the ortholog conjecture with comparative functional genomic data from mammals. PLoS Comput Biol. 2011;7:e1002073. - PMC - PubMed
    1. Hill DP, Smith B, McAndrews-Hill MS, Blake JA. Gene Ontology annotations: what they mean and where they come from. BMC Bioinformatics. 2008;9(Suppl 5):S2. - PMC - PubMed
    1. Ohno S. Evolution by Gene Duplication. Berlin: Springer-Verlag; 1970.

Publication types

MeSH terms

LinkOut - more resources