Regular, brief mindfulness meditation practice improves electrophysiological markers of attentional control - PubMed (original) (raw)

Regular, brief mindfulness meditation practice improves electrophysiological markers of attentional control

Adam Moore et al. Front Hum Neurosci. 2012.

Abstract

Mindfulness-based meditation practices involve various attentional skills, including the ability to sustain and focus ones attention. During a simple mindful breathing practice, sustained attention is required to maintain focus on the breath while cognitive control is required to detect mind wandering. We thus hypothesized that regular, brief mindfulness training would result in improvements in the self-regulation of attention and foster changes in neuronal activity related to attentional control. A longitudinal randomized control group EEG study was conducted. At baseline (T1), 40 meditation naïve participants were randomized into a wait list group and a meditation group, who received three hours mindfulness meditation training. Twenty-eight participants remained in the final analysis. At T1, after eight weeks (T2) and after 16 weeks (T3), all participants performed a computerized Stroop task (a measure of attentional control) while the 64-channel EEG was recorded. Between T1 and T3 the meditators were requested to meditate daily for 10 min. Event-related potential (ERP) analysis highlighted two between group effects that developed over the course of the 16-week mindfulness training. An early effect at left and right posterior sites 160-240 ms post-stimulus indicated that meditation practice improved the focusing of attentional resources. A second effect at central posterior sites 310-380 ms post-stimulus reflects that meditation practice reduced the recruitment of resources during object recognition processes, especially for incongruent stimuli. Scalp topographies and source analyses (Variable Resolution Electromagnetic Tomography, VARETA) indicate relevant changes in neural sources, pertaining to left medial and lateral occipitotemporal areas for the early effect and right lateral occipitotemporal and inferior temporal areas for the later effect. The results suggest that mindfulness meditation may alter the efficiency of allocating cognitive resources, leading to improved self-regulation of attention.

Keywords: EEG; Stroop; attention; cognitive control; interference; meditation; mindfulness.

PubMed Disclaimer

Figures

Figure 1

Figure 1

Flow of participants through the study. From randomly allocating 20 participants to each group, for the final analysis 12 participants remained in the meditation group and 16 in the control group.

Figure 2

Figure 2

Grand mean average ERPs of all 28 participants for congruent and incongruent stimuli, averaged over Group (meditation, control) and Time (T1, T2, T3). ERPs from eight representative electrodes (out of 64 scalp electrodes) are shown. The three analysis time windows (N2: 160–240 ms, P3: 310–380 ms, and LN: 400–600 ms) are indicated at electrode POz.

Figure 3

Figure 3

Total mindfulness scores (FFMQ-total, possible range 39–195) for meditation group and control group from T1 to T3. The figure depicts the significant interaction between Group and Time. Error bars show the standard error of the mean.

Figure 4

Figure 4

Analysis of the N2 time window, from 160 to 240 ms. (A) Grand mean averages for meditation and control group for T1 and T3 averaged over left posterior electrodes (PO7, PO3, O1; upper row) and right posterior electrodes (PO8, PO4, O2; lower row). (B) Mean N2 amplitudes from T1 to T3 averaged over the same electrode clusters. (C) Spherical spline interpolated scalp topographies of the difference between T1 and T3 (T3–T1) for meditation and control group, separated for congruent and incongruent stimuli. Positive values indicate a decrease in amplitudes; negative values indicate an increase in amplitudes. (D) Activation differences between T1 and T3 for each group and congruency, based on the localization of cortical generators with VARETA. Significant differences (threshold p < 0.001) are presented for axial MNI slices at Z = −10 for congruent stimuli and at Z = −17 for incongruent stimuli (centers of gravity of the activation). Salmon-colored areas indicate a decrease in activation and green areas indicate an increase in activation.

Figure 5

Figure 5

Analysis of the P3 time window, from 310 to 380 ms. (A) Grand mean averages for meditation and control group for T1 and T3 for electrode Pz. (B) Mean P3 amplitudes from T1 to T3 averaged for the same electrode. (C) Spherical spline interpolated scalp topographies of the difference between T1 and T3 (T3–T1) for meditation and control group, separated for congruent and incongruent stimuli. Positive values indicate an increase in amplitudes; negative values indicate a decrease in amplitudes. (D) Activation differences between T1 and T3 for each group and congruency, based on the localization of cortical generators with VARETA. Significant differences (threshold p < 0.001) are presented for axial MNI slices at Z = −17 (center of gravity of the activation). Salmon-colored areas indicate a decrease in activation and green areas indicate an increase in activation.

Similar articles

Cited by

References

    1. Aarts E., Roelofs A., van Turennout M. (2008). Anticipatory activity in anterior cingulate cortex can be independent of conflict and error likelihood. J. Neurosci. 28, 4671–4678 10.1523/JNEUROSCI.4400-07.2008 - DOI - PMC - PubMed
    1. Adorni R., Proverbio A. M. (2009). New insights into name category-related effects: is the age of acquisition a possible factor? Behav. Brain Funct. 5, 33 10.1186/1744-9081-5-33 - DOI - PMC - PubMed
    1. Akhtar N., Enns J. T. (1989). Relations between covert orienting and filtering in the development of visual attention. J. Exp. Child Psychol. 48, 315–334 - PubMed
    1. Anderson N. D., Lau M. A., Segal Z. V., Bishop S. R. (2007). Mindfulness-based stress reduction and attentional control. Clin. Psychol. Psychother. 14, 449–463
    1. Baer R. A., Smith G. T., Hopkins J., Krietemeyer J., Toney L. (2006). Using self-report assessment methods to explore facets of mindfulness. Assessment 13, 27–45 10.1177/1073191105283504 - DOI - PubMed

LinkOut - more resources