Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity - PubMed (original) (raw)
. 2012 Mar 22;73(6):1159-72.
doi: 10.1016/j.neuron.2012.01.027. Epub 2012 Mar 21.
Affiliations
- PMID: 22445343
- DOI: 10.1016/j.neuron.2012.01.027
Free article
Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity
Therese Abrahamsson et al. Neuron. 2012.
Free article
Abstract
Interneurons are critical for neuronal circuit function, but how their dendritic morphologies and membrane properties influence information flow within neuronal circuits is largely unknown. We studied the spatiotemporal profile of synaptic integration and short-term plasticity in dendrites of mature cerebellar stellate cells by combining two-photon guided electrical stimulation, glutamate uncaging, electron microscopy, and modeling. Synaptic activation within thin (0.4 μm) dendrites produced somatic responses that became smaller and slower with increasing distance from the soma, sublinear subthreshold input-output relationships, and a somatodendritic gradient of short-term plasticity. Unlike most studies showing that neurons employ active dendritic mechanisms, we found that passive cable properties of thin dendrites determine the sublinear integration and plasticity gradient, which both result from large dendritic depolarizations that reduce synaptic driving force. These integrative properties allow stellate cells to act as spatiotemporal filters of synaptic input patterns, thereby biasing their output in favor of sparse presynaptic activity.
Copyright © 2012 Elsevier Inc. All rights reserved.
Similar articles
- Short-term synaptic plasticity during development of rat mossy fibre to granule cell synapses.
Wall MJ. Wall MJ. Eur J Neurosci. 2005 Apr;21(8):2149-58. doi: 10.1111/j.1460-9568.2005.04048.x. Eur J Neurosci. 2005. PMID: 15869511 - Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons.
Takahashi H, Magee JC. Takahashi H, et al. Neuron. 2009 Apr 16;62(1):102-11. doi: 10.1016/j.neuron.2009.03.007. Neuron. 2009. PMID: 19376070 - Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe.
Engelmann J, van den Burg E, Bacelo J, de Ruijters M, Kuwana S, Sugawara Y, Grant K. Engelmann J, et al. J Physiol Paris. 2008 Jul-Nov;102(4-6):233-45. doi: 10.1016/j.jphysparis.2008.10.004. Epub 2008 Oct 17. J Physiol Paris. 2008. PMID: 18992811 - Organelles and trafficking machinery for postsynaptic plasticity.
Kennedy MJ, Ehlers MD. Kennedy MJ, et al. Annu Rev Neurosci. 2006;29:325-62. doi: 10.1146/annurev.neuro.29.051605.112808. Annu Rev Neurosci. 2006. PMID: 16776589 Free PMC article. Review. - The back and forth of dendritic plasticity.
Williams SR, Wozny C, Mitchell SJ. Williams SR, et al. Neuron. 2007 Dec 20;56(6):947-53. doi: 10.1016/j.neuron.2007.12.004. Neuron. 2007. PMID: 18093518 Review.
Cited by
- Passive dendrites enable single neurons to compute linearly non-separable functions.
Cazé RD, Humphries M, Gutkin B. Cazé RD, et al. PLoS Comput Biol. 2013;9(2):e1002867. doi: 10.1371/journal.pcbi.1002867. Epub 2013 Feb 28. PLoS Comput Biol. 2013. PMID: 23468600 Free PMC article. - Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR.
Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A, Müller JA, Schoch S, Quiroz FJU, Rebola N, Bao H, Little JP, Tkachuk AN, Cai E, Hantman AW, Wang SS, DePiero VJ, Borghuis BG, Chapman ER, Dietrich D, DiGregorio DA, Fitzpatrick D, Looger LL. Marvin JS, et al. Nat Methods. 2018 Nov;15(11):936-939. doi: 10.1038/s41592-018-0171-3. Epub 2018 Oct 30. Nat Methods. 2018. PMID: 30377363 Free PMC article. - Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.
Rudolph S, Hull C, Regehr WG. Rudolph S, et al. J Neurosci. 2015 Nov 25;35(47):15492-504. doi: 10.1523/JNEUROSCI.3132-15.2015. J Neurosci. 2015. PMID: 26609148 Free PMC article. - Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.
Ujfalussy BB, Makara JK, Branco T, Lengyel M. Ujfalussy BB, et al. Elife. 2015 Dec 24;4:e10056. doi: 10.7554/eLife.10056. Elife. 2015. PMID: 26705334 Free PMC article. - How synaptic strength, short-term plasticity, and input synchrony contribute to neuronal spike output.
Buchholz MO, Gastone Guilabert A, Ehret B, Schuhknecht GFP. Buchholz MO, et al. PLoS Comput Biol. 2023 Apr 17;19(4):e1011046. doi: 10.1371/journal.pcbi.1011046. eCollection 2023 Apr. PLoS Comput Biol. 2023. PMID: 37068099 Free PMC article.