Mitochondrial dynamics in heart disease - PubMed (original) (raw)
Review
Mitochondrial dynamics in heart disease
Gerald W Dorn 2nd. Biochim Biophys Acta. 2013 Jan.
Abstract
Mitochondrial fission and fusion have been observed, and their importance revealed, in almost every tissue and cell type except adult cardiac myocytes. As each human heart is uniquely dependent upon mitochondria to generate massive amounts of ATP that fuel its approximately 38 million contractions per year, it seems odd that cardiac myocytes are the sole exception to the general rule that mitochondrial dynamism is important to function. Here, I briefly review the mechanisms for mitochondrial fusion and fission and examine current data that dispel the previous notion that mitochondrial fusion is dispensable in the heart. Rare and generally overlooked examples of cardiomyopathies linked either to naturally-occurring mutations or to experimentally-induced mutagenesis of mitochondrial fusion/fission genes are described. New findings from genetically targeted Drosophila and mouse models wherein mitochondrial fusion deficiency has specifically been induced in cardiac myocytes are discussed. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Copyright © 2012 Elsevier B.V. All rights reserved.
Conflict of interest statement
The author declares that he has no conflicts of interest relating to this manuscript
Figures
Figure 1. Subcellular arrangement of mitochondria in normal adult cardiomyocytes
Transmission electron micrograph of normal 8 week old mouse myocardium. Note lanes of interfibrillar mitochondria running between individual myofibrils and cluster of mitochondria surrounding nucleus (bisected on right margin). The “sardines in a can” arrangement appears to enforce inter-organelle contact and does not permit meaningful intra-cellular mitochondrial transport.
Figure 2. Optical coherence tomography of normal and mitochondrial fusion-defective Drosophila hearts
A. Representative images of a fruit fly heart tube in cross section (left), one isolated mouse cardiac myocyte (middle) and human epidermal sweat glands (right), each acquired under the same conditions. Scale bar is 200 microns. B. Line-scan images of representative Drosophila heart tube contractions, showing chamber diameter as a function of time. Top is control fly and bottom is MARF RNAi fly. End-systolic and end-diastolic dimensions (ESD and EDD) are indicated for one cardiac cycle each to the right.
Figure 3. Mitochondrial fragmentation in mouse hearts with defective mitochondrial fusion
Transmission electron micrograph of Mfn1/Mfn2 double null mouse myocardium 3 weeks after conditional gene ablation with tamoxifen. White arrow indicates a normal appearing mitochondrion. Black arrows point to representative small and translucent “fragmented” mitochondria.
Similar articles
- Dissociation of mitochondrial from sarcoplasmic reticular stress in Drosophila cardiomyopathy induced by molecularly distinct mitochondrial fusion defects.
Bhandari P, Song M, Dorn GW 2nd. Bhandari P, et al. J Mol Cell Cardiol. 2015 Mar;80:71-80. doi: 10.1016/j.yjmcc.2014.12.018. Epub 2014 Dec 30. J Mol Cell Cardiol. 2015. PMID: 25555803 Free PMC article. - Cardiac Dysfunction in the Sigma 1 Receptor Knockout Mouse Associated With Impaired Mitochondrial Dynamics and Bioenergetics.
Abdullah CS, Alam S, Aishwarya R, Miriyala S, Panchatcharam M, Bhuiyan MAN, Peretik JM, Orr AW, James J, Osinska H, Robbins J, Lorenz JN, Bhuiyan MS. Abdullah CS, et al. J Am Heart Assoc. 2018 Oct 16;7(20):e009775. doi: 10.1161/JAHA.118.009775. J Am Heart Assoc. 2018. PMID: 30371279 Free PMC article. - Regulation of mitochondrial bioenergetics by the non-canonical roles of mitochondrial dynamics proteins in the heart.
Wang W, Fernandez-Sanz C, Sheu SS. Wang W, et al. Biochim Biophys Acta Mol Basis Dis. 2018 May;1864(5 Pt B):1991-2001. doi: 10.1016/j.bbadis.2017.09.004. Epub 2017 Sep 14. Biochim Biophys Acta Mol Basis Dis. 2018. PMID: 28918113 Free PMC article. Review. - Mitochondrial dynamism and cardiac fate--a personal perspective.
Dorn GW 2nd. Dorn GW 2nd. Circ J. 2013;77(6):1370-9. doi: 10.1253/circj.cj-13-0453. Epub 2013 Apr 25. Circ J. 2013. PMID: 23615052 Review. - Low cardiac lipolysis reduces mitochondrial fission and prevents lipotoxic heart dysfunction in Perilipin 5 mutant mice.
Kolleritsch S, Kien B, Schoiswohl G, Diwoky C, Schreiber R, Heier C, Maresch LK, Schweiger M, Eichmann TO, Stryeck S, Krenn P, Tomin T, Schittmayer M, Kolb D, Rülicke T, Hoefler G, Wolinski H, Madl T, Birner-Gruenberger R, Haemmerle G. Kolleritsch S, et al. Cardiovasc Res. 2020 Feb 1;116(2):339-352. doi: 10.1093/cvr/cvz119. Cardiovasc Res. 2020. PMID: 31166588 Free PMC article.
Cited by
- Dissociation of mitochondrial from sarcoplasmic reticular stress in Drosophila cardiomyopathy induced by molecularly distinct mitochondrial fusion defects.
Bhandari P, Song M, Dorn GW 2nd. Bhandari P, et al. J Mol Cell Cardiol. 2015 Mar;80:71-80. doi: 10.1016/j.yjmcc.2014.12.018. Epub 2014 Dec 30. J Mol Cell Cardiol. 2015. PMID: 25555803 Free PMC article. - Kruppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis.
Liao X, Zhang R, Lu Y, Prosdocimo DA, Sangwung P, Zhang L, Zhou G, Anand P, Lai L, Leone TC, Fujioka H, Ye F, Rosca MG, Hoppel CL, Schulze PC, Abel ED, Stamler JS, Kelly DP, Jain MK. Liao X, et al. J Clin Invest. 2015 Sep;125(9):3461-76. doi: 10.1172/JCI79964. Epub 2015 Aug 4. J Clin Invest. 2015. PMID: 26241060 Free PMC article. - Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy.
Westermeier F, Navarro-Marquez M, López-Crisosto C, Bravo-Sagua R, Quiroga C, Bustamante M, Verdejo HE, Zalaquett R, Ibacache M, Parra V, Castro PF, Rothermel BA, Hill JA, Lavandero S. Westermeier F, et al. Biochim Biophys Acta. 2015 May;1853(5):1113-8. doi: 10.1016/j.bbamcr.2015.02.005. Epub 2015 Feb 14. Biochim Biophys Acta. 2015. PMID: 25686534 Free PMC article. Review. - Advances in understanding mechanisms and therapeutic targets to treat comorbid depression and cardiovascular disease.
Pope BS, Wood SK. Pope BS, et al. Neurosci Biobehav Rev. 2020 Sep;116:337-349. doi: 10.1016/j.neubiorev.2020.06.031. Epub 2020 Jun 26. Neurosci Biobehav Rev. 2020. PMID: 32598982 Free PMC article. Review. - Berberine Alleviates Doxorubicin-Induced Myocardial Injury and Fibrosis by Eliminating Oxidative Stress and Mitochondrial Damage via Promoting Nrf-2 Pathway Activation.
Wang Y, Liao J, Luo Y, Li M, Su X, Yu B, Teng J, Wang H, Lv X. Wang Y, et al. Int J Mol Sci. 2023 Feb 7;24(4):3257. doi: 10.3390/ijms24043257. Int J Mol Sci. 2023. PMID: 36834687 Free PMC article.
References
- Ferrari R, Censi S, Mastrorilli F, Boraso A. Prognostic benefits of heart rate reduction in cardiovascular disease. Eur Heart J Suppl. 2003;5:G10–G14.
- Page E, McCallister LP. Quantitative electron microscopic description of heart muscle cells. Application to normal, hypertrophied and thyroxin-stimulated hearts. Am J Cardiol. 1973;31:172–181. - PubMed
- Lardy HA, Wellman H. Oxidative phosphorylations; role of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem. 1952;195:215–224. - PubMed
- Balaban RS, Kantor HL, Katz LA, Briggs RW. Relation between work and phosphate metabolite in the in vivo paced mammalian heart. Science. 1986;232:1121–1123. - PubMed
- Katz LA, Swain JA, Portman MA, Balaban RS. Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am J Physiol. 1989;256:H265–274. - PubMed
Publication types
MeSH terms
Grants and funding
- R01 HL059888-06/HL/NHLBI NIH HHS/United States
- R01 HL059888-03/HL/NHLBI NIH HHS/United States
- R21 HL107276/HL/NHLBI NIH HHS/United States
- R01 HL059888-01A1/HL/NHLBI NIH HHS/United States
- R21 HL107276-01A1/HL/NHLBI NIH HHS/United States
- R01 HL059888-11/HL/NHLBI NIH HHS/United States
- R01 HL059888-09A1/HL/NHLBI NIH HHS/United States
- R01 HL059888-04/HL/NHLBI NIH HHS/United States
- R01 HL059888-12/HL/NHLBI NIH HHS/United States
- R01 HL059888-13/HL/NHLBI NIH HHS/United States
- R01 HL059888-08/HL/NHLBI NIH HHS/United States
- R01 HL059888-09A1W1/HL/NHLBI NIH HHS/United States
- R01 HL059888-02/HL/NHLBI NIH HHS/United States
- R01 HL059888-07/HL/NHLBI NIH HHS/United States
- R01 HL059888/HL/NHLBI NIH HHS/United States
- R21 HL107276-02/HL/NHLBI NIH HHS/United States
- R01 HL059888-10/HL/NHLBI NIH HHS/United States
- R01 HL059888-05/HL/NHLBI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials