Ion mobility-mass spectrometry (IM-MS) for top-down proteomics: increased dynamic range affords increased sequence coverage - PubMed (original) (raw)
. 2012 Apr 3;84(7):3390-7.
doi: 10.1021/ac300193s. Epub 2012 Mar 22.
Affiliations
- PMID: 22455956
- DOI: 10.1021/ac300193s
Ion mobility-mass spectrometry (IM-MS) for top-down proteomics: increased dynamic range affords increased sequence coverage
Nathanael F Zinnel et al. Anal Chem. 2012.
Abstract
A general approach that combines mass spectrometry (MS), collision-induced dissociation (CID), ion mobility (IM), and MS for top-down proteomics is described, denoted as MS-CID-IM-MS. Using this approach, CID product ions are dispersed in two dimensions, specifically size-to-charge (IM) and mass-to-charge (MS), and the resulting 2D data display greatly facilitates peptide/protein mass mapping, amino acid sequence analysis, and determination of site-specific protein modifications. Also, this approach alleviates some of the inherent limitations of top-down proteomics, viz. the limitations in dynamic range for fragment ion abundances owing to the number of fragmentation channels available to large ionic systems as well as the resulting spectral congestion. For large peptides such as melittin (2845 Da), CID of the [M + 3H](3+), [M + 4H](4+), and [M + 5H](5+) ions yields amino acid sequence coverage of 42.3%, 38.5%, and 7.7%, respectively, whereas the hybrid MS-CID-IM-MS approach yields amino acid sequence coverages of 84.6%, 65.4%, and 69.2%, respectively. For large biomolecules such as ubiquitin (8565 Da), the amino acid sequence coverage increases from 39% to 76%. The MS-CID-IM-MS top-down approach allows for greater depth of information by allowing the assignment and study of internal fragment ions. Lastly, analysis of the methyl esterification of ubiquitin and single point mutation of human iron sulfur cluster U (HISCU, 14.3 kDa) demonstrates the ability of MS-CID-IM-MS to rapidly identify the presence and sites of modifications.
Similar articles
- Charge state dependent top-down characterisation using electron transfer dissociation.
Rožman M, Gaskell SJ. Rožman M, et al. Rapid Commun Mass Spectrom. 2012 Feb 15;26(3):282-6. doi: 10.1002/rcm.5330. Rapid Commun Mass Spectrom. 2012. PMID: 22223314 - Rapid identification of protein biomarkers of Escherichia coli O157:H7 by matrix-assisted laser desorption ionization-time-of-flight-time-of-flight mass spectrometry and top-down proteomics.
Fagerquist CK, Garbus BR, Miller WG, Williams KE, Yee E, Bates AH, Boyle S, Harden LA, Cooley MB, Mandrell RE. Fagerquist CK, et al. Anal Chem. 2010 Apr 1;82(7):2717-25. doi: 10.1021/ac902455d. Anal Chem. 2010. PMID: 20232878 - 100% protein sequence coverage: a modern form of surrealism in proteomics.
Meyer B, Papasotiriou DG, Karas M. Meyer B, et al. Amino Acids. 2011 Jul;41(2):291-310. doi: 10.1007/s00726-010-0680-6. Epub 2010 Jul 13. Amino Acids. 2011. PMID: 20625782 Review. - Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications.
Wiesner J, Premsler T, Sickmann A. Wiesner J, et al. Proteomics. 2008 Nov;8(21):4466-83. doi: 10.1002/pmic.200800329. Proteomics. 2008. PMID: 18972526 Review.
Cited by
- Top-Down Protein Analysis by Tandem-Trapped Ion Mobility Spectrometry/Mass Spectrometry (Tandem-TIMS/MS) Coupled with Ultraviolet Photodissociation (UVPD) and Parallel Accumulation/Serial Fragmentation (PASEF) MS/MS Analysis.
Liu FC, Ridgeway ME, Wootton CA, Theisen A, Panczyk EM, Meier F, Park MA, Bleiholder C. Liu FC, et al. J Am Soc Mass Spectrom. 2023 Oct 4;34(10):2232-2246. doi: 10.1021/jasms.3c00187. Epub 2023 Aug 28. J Am Soc Mass Spectrom. 2023. PMID: 37638640 Free PMC article. - A new ion mobility-linear ion trap instrument for complex mixture analysis.
Donohoe GC, Maleki H, Arndt JR, Khakinejad M, Yi J, McBride C, Nurkiewicz TR, Valentine SJ. Donohoe GC, et al. Anal Chem. 2014 Aug 19;86(16):8121-8. doi: 10.1021/ac501527y. Epub 2014 Aug 6. Anal Chem. 2014. PMID: 25068446 Free PMC article. - ClipsMS: An Algorithm for Analyzing Internal Fragments Resulting from Top-Down Mass Spectrometry.
Lantz C, Zenaidee MA, Wei B, Hemminger Z, Ogorzalek Loo RR, Loo JA. Lantz C, et al. J Proteome Res. 2021 Apr 2;20(4):1928-1935. doi: 10.1021/acs.jproteome.0c00952. Epub 2021 Mar 2. J Proteome Res. 2021. PMID: 33650866 Free PMC article. - Free Radical-Based Sequencing for Native Top-Down Mass Spectrometry.
Rojas Ramírez C, Murtada R, Gao J, Ruotolo BT. Rojas Ramírez C, et al. J Am Soc Mass Spectrom. 2022 Dec 7;33(12):2283-2290. doi: 10.1021/jasms.2c00252. Epub 2022 Nov 8. J Am Soc Mass Spectrom. 2022. PMID: 36346751 Free PMC article. - Enhanced Top-Down Protein Characterization with Electron Capture Dissociation and Cyclic Ion Mobility Spectrometry.
Shaw JB, Cooper-Shepherd DA, Hewitt D, Wildgoose JL, Beckman JS, Langridge JI, Voinov VG. Shaw JB, et al. Anal Chem. 2022 Mar 8;94(9):3888-3896. doi: 10.1021/acs.analchem.1c04870. Epub 2022 Feb 21. Anal Chem. 2022. PMID: 35188751 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources