Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics - PubMed (original) (raw)
Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics
Ye Li et al. Biomaterials. 2012 Jun.
Abstract
In this work, an N-varied dissipative particle dynamics (DPD) simulation technique is applied to investigate detailed endocytosis kinetics for ligand-coated nanoparticles with different shapes, including sphere-, rod- and disk-shaped nanoparticles. Our results indicate that the rotation of nanoparticles, which is one of the most important mechanisms for endocytosis of shaped nanoparticle, regulates the competition between ligand-receptor binding and membrane deformation. Shape anisotropy of nanoparticles divides the whole internalization process into two stages: membrane invagination and nanoparticle wrapping. Due to the strong ligand-receptor binding energy, the membrane invagination stage is featured by the rotation of nanoparticles to maximize their contact area with the membrane. While the kinetics of the wrapping stage is mainly dominated by the part of nanoparticles with the largest local mean curvature, at which the membrane is most strongly bent. Therefore, nanoparticles with various shapes display different favorable orientations for the two stages, and one or two orientation rearrangement may be required during the endocytosis process. Our simulation results also demonstrate that the shape anisotropy of nanoparticles generates a heterogeneous membrane curvature distribution and might break the symmetry of the internalization pathway, and hence induce an asymmetric endocytosis.
Copyright © 2012 Elsevier Ltd. All rights reserved.
Similar articles
- A computational study of the influence of nanoparticle shape on clathrin-mediated endocytosis.
Li Y, Zhang M, Zhang Y, Niu X, Liu Z, Yue T, Zhang W. Li Y, et al. J Mater Chem B. 2023 Jul 12;11(27):6319-6334. doi: 10.1039/d3tb00322a. J Mater Chem B. 2023. PMID: 37232123 - Influence of geometric nanoparticle rotation on cellular internalization process.
Yang K, Yuan B, Ma YQ. Yang K, et al. Nanoscale. 2013 Sep 7;5(17):7998-8006. doi: 10.1039/c3nr01561k. Nanoscale. 2013. PMID: 23863854 - Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles.
Yue T, Zhang X. Yue T, et al. ACS Nano. 2012 Apr 24;6(4):3196-205. doi: 10.1021/nn205125e. Epub 2012 Mar 23. ACS Nano. 2012. PMID: 22429100 - Physical Principles of Nanoparticle Cellular Endocytosis.
Zhang S, Gao H, Bao G. Zhang S, et al. ACS Nano. 2015 Sep 22;9(9):8655-71. doi: 10.1021/acsnano.5b03184. Epub 2015 Aug 21. ACS Nano. 2015. PMID: 26256227 Free PMC article. Review. - Endocytosis at the nanoscale.
Canton I, Battaglia G. Canton I, et al. Chem Soc Rev. 2012 Apr 7;41(7):2718-39. doi: 10.1039/c2cs15309b. Epub 2012 Mar 5. Chem Soc Rev. 2012. PMID: 22389111 Review.
Cited by
- Impact of mechanical cues on key cell functions and cell-nanoparticle interactions.
Elblová P, Lunova M, Dejneka A, Jirsa M, Lunov O. Elblová P, et al. Discov Nano. 2024 Jun 22;19(1):106. doi: 10.1186/s11671-024-04052-2. Discov Nano. 2024. PMID: 38907808 Free PMC article. Review. - Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy.
Fu S, Li G, Zang W, Zhou X, Shi K, Zhai Y. Fu S, et al. Acta Pharm Sin B. 2022 Jan;12(1):92-106. doi: 10.1016/j.apsb.2021.08.012. Epub 2021 Aug 14. Acta Pharm Sin B. 2022. PMID: 35127374 Free PMC article. Review. - Targeting lymph nodes for enhanced cancer vaccination: From nanotechnology to tissue engineering.
Wang J, Zhang Z, Liang R, Chen W, Li Q, Xu J, Zhao H, Xing D. Wang J, et al. Mater Today Bio. 2024 Apr 26;26:101068. doi: 10.1016/j.mtbio.2024.101068. eCollection 2024 Jun. Mater Today Bio. 2024. PMID: 38711936 Free PMC article. Review. - Multiscale perspectives of virus entry via endocytosis.
Barrow E, Nicola AV, Liu J. Barrow E, et al. Virol J. 2013 Jun 5;10:177. doi: 10.1186/1743-422X-10-177. Virol J. 2013. PMID: 23734580 Free PMC article. Review. - In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?
Nazarenus M, Zhang Q, Soliman MG, Del Pino P, Pelaz B, Carregal-Romero S, Rejman J, Rothen-Rutishauser B, Clift MJ, Zellner R, Nienhaus GU, Delehanty JB, Medintz IL, Parak WJ. Nazarenus M, et al. Beilstein J Nanotechnol. 2014 Sep 9;5:1477-90. doi: 10.3762/bjnano.5.161. eCollection 2014. Beilstein J Nanotechnol. 2014. PMID: 25247131 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources