Effects of aging on articular cartilage homeostasis - PubMed (original) (raw)
Review
Effects of aging on articular cartilage homeostasis
Martin Lotz et al. Bone. 2012 Aug.
Abstract
This review is focused on aging-related changes in cells and extracellular matrix of the articular cartilage. Major extracellular matrix changes are a reduced thickness of cartilage, proteolysis, advanced glycation and calcification. The cellular changes include reduced cell density, cellular senescence with abnormal secretory profiles, and impaired cellular defense mechanisms and anabolic responses. The extracellular and cellular changes compound each other, leading to biomechanical dysfunction and tissue destruction. The consequences of aging-related changes for joint homeostasis and risk for osteoarthritis are discussed. This article is part of a Special Issue entitled "Osteoarthritis".
Copyright © 2012 Elsevier Inc. All rights reserved.
Figures
Fig. 1. Macroscopic images of human femoral condyles
Images represent normal young (left, age 40), normal aging (center, age 76) OA (right, age 88) tissue. The old normal condyle shows intact cartilage with yellow discoloration, which is in part due to the formation of advanced glycation end products. The OA sample features large areas with complete loss of articular cartilage (dashed line on the left femoral condyle), osteophytes at the joint margins (red arrowheads) and the intercondylar notch (blue arrowheads). M=medial; L=lateral
Fig. 2. Safranin O stained sections of human femoral condyles
Images show young normal (left, age 40), old normal (center, age 76) and OA donors (right, age 88). The old normal sample has reduced tissue height, reduced safranin O staining in the superficial zone but no structural defects at the surface. The OA sample shows loss the superficial and part of the mid zone, fibrillations extending into the deep zone, areas with low cell density and cell clusters and duplication of the tidemark. All images are shown at 2.5x magnification.
Similar articles
- Aging and osteoarthritis: Central role of the extracellular matrix.
Rahmati M, Nalesso G, Mobasheri A, Mozafari M. Rahmati M, et al. Ageing Res Rev. 2017 Nov;40:20-30. doi: 10.1016/j.arr.2017.07.004. Epub 2017 Jul 31. Ageing Res Rev. 2017. PMID: 28774716 Review. - Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis.
Martin JA, Buckwalter JA. Martin JA, et al. Iowa Orthop J. 2001;21:1-7. Iowa Orthop J. 2001. PMID: 11813939 Free PMC article. Review. - Epigenetic Mechanisms Underlying the Aging of Articular Cartilage and Osteoarthritis.
Zhang M, Theleman JL, Lygrisse KA, Wang J. Zhang M, et al. Gerontology. 2019;65(4):387-396. doi: 10.1159/000496688. Epub 2019 Apr 10. Gerontology. 2019. PMID: 30970348 Free PMC article. Review. - Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage.
Gilbert SJ, Bonnet CS, Blain EJ. Gilbert SJ, et al. Int J Mol Sci. 2021 Dec 18;22(24):13595. doi: 10.3390/ijms222413595. Int J Mol Sci. 2021. PMID: 34948394 Free PMC article. Review. - Cellular senescence in aging and osteoarthritis.
Toh WS, Brittberg M, Farr J, Foldager CB, Gomoll AH, Hui JH, Richardson JB, Roberts S, Spector M. Toh WS, et al. Acta Orthop. 2016 Dec;87(sup363):6-14. doi: 10.1080/17453674.2016.1235087. Epub 2016 Sep 23. Acta Orthop. 2016. PMID: 27658487 Free PMC article. Review.
Cited by
- [Possibilities and limits of conservative treatment for osteoarthritis : Sport advice, training therapy, orthotics and cartilage therapeutics].
Nehrer S, Neubauer M. Nehrer S, et al. Orthopade. 2021 May;50(5):346-355. doi: 10.1007/s00132-021-04100-0. Epub 2021 Apr 9. Orthopade. 2021. PMID: 33837442 Free PMC article. Review. German. - Transthyretin deposition in articular cartilage: a novel mechanism in the pathogenesis of osteoarthritis.
Akasaki Y, Reixach N, Matsuzaki T, Alvarez-Garcia O, Olmer M, Iwamoto Y, Buxbaum JN, Lotz MK. Akasaki Y, et al. Arthritis Rheumatol. 2015 May;67(8):2097-107. doi: 10.1002/art.39178. Arthritis Rheumatol. 2015. PMID: 25940564 Free PMC article. - Endostatin in 3D Fibrin Hydrogel Scaffolds Promotes Chondrogenic Differentiation in Swine Neonatal Meniscal Cells.
Herrera Millar VR, Canciani B, Mangiavini L, Filipe JFS, Aidos L, Pallaoro M, Peretti GM, Pocar P, Modina SC, Di Giancamillo A. Herrera Millar VR, et al. Biomedicines. 2022 Sep 27;10(10):2415. doi: 10.3390/biomedicines10102415. Biomedicines. 2022. PMID: 36289678 Free PMC article. - Integrin signalling in joint development, homeostasis and osteoarthritis.
Miao MZ, Lee JS, Yamada KM, Loeser RF. Miao MZ, et al. Nat Rev Rheumatol. 2024 Aug;20(8):492-509. doi: 10.1038/s41584-024-01130-8. Epub 2024 Jul 16. Nat Rev Rheumatol. 2024. PMID: 39014254 Review. - Suppression of Sestrins in aging and osteoarthritic cartilage: dysfunction of an important stress defense mechanism.
Shen T, Alvarez-Garcia O, Li Y, Olmer M, Lotz MK. Shen T, et al. Osteoarthritis Cartilage. 2017 Feb;25(2):287-296. doi: 10.1016/j.joca.2016.09.017. Epub 2016 Sep 29. Osteoarthritis Cartilage. 2017. PMID: 27693501 Free PMC article.
References
- Oliveria SA, Felson DT, Reed JI, Cirillo PA, Walker AM. Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum. 1995;38:1134–41. - PubMed
- Hashimoto S, Ochs RL, Komiya S, Lotz M. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis and Rheumatism. 1998;41:1632–8. - PubMed
Publication types
MeSH terms
Grants and funding
- AR49003/AR/NIAMS NIH HHS/United States
- P30 AG021332/AG/NIA NIH HHS/United States
- R01 AR056026/AR/NIAMS NIH HHS/United States
- R37 AR049003/AR/NIAMS NIH HHS/United States
- R01 AR049003/AR/NIAMS NIH HHS/United States
- AR056026/AR/NIAMS NIH HHS/United States
- AG007996/AG/NIA NIH HHS/United States
- P01 AG007996/AG/NIA NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical