SigMate: a Matlab-based automated tool for extracellular neuronal signal processing and analysis - PubMed (original) (raw)
. 2012 May 30;207(1):97-112.
doi: 10.1016/j.jneumeth.2012.03.009. Epub 2012 Apr 10.
Affiliations
- PMID: 22513383
- DOI: 10.1016/j.jneumeth.2012.03.009
Free article
SigMate: a Matlab-based automated tool for extracellular neuronal signal processing and analysis
Mufti Mahmud et al. J Neurosci Methods. 2012.
Free article
Abstract
Rapid advances in neuronal probe technology for multisite recording of brain activity have posed a significant challenge to neuroscientists for processing and analyzing the recorded signals. To be able to infer meaningful conclusions quickly and accurately from large datasets, automated and sophisticated signal processing and analysis tools are required. This paper presents a Matlab-based novel tool, "SigMate", incorporating standard methods to analyze spikes and EEG signals, and in-house solutions for local field potentials (LFPs) analysis. Available modules at present are - 1. In-house developed algorithms for: data display (2D and 3D), file operations (file splitting, file concatenation, and file column rearranging), baseline correction, slow stimulus artifact removal, noise characterization and signal quality assessment, current source density (CSD) analysis, latency estimation from LFPs and CSDs, determination of cortical layer activation order using LFPs and CSDs, and single LFP clustering; 2. Existing modules: spike detection, sorting and spike train analysis, and EEG signal analysis. SigMate has the flexibility of analyzing multichannel signals as well as signals from multiple recording sources. The in-house developed tools for LFP analysis have been extensively tested with signals recorded using standard extracellular recording electrode, and planar and implantable multi transistor array (MTA) based neural probes. SigMate will be disseminated shortly to the neuroscience community under the open-source GNU-General Public License.
Copyright © 2012 Elsevier B.V. All rights reserved.
Similar articles
- SigMate: A MATLAB-based neuronal signal processing tool.
Mahmud M, Bertoldo A, Girardi S, Maschietto M, Vassanelli S. Mahmud M, et al. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1352-5. doi: 10.1109/IEMBS.2010.5626747. Annu Int Conf IEEE Eng Med Biol Soc. 2010. PMID: 21096329 - An automated method for detection of layer activation order in information processing pathway of rat barrel cortex under mechanical whisker stimulation.
Mahmud M, Pasqualotto E, Bertoldo A, Girardi S, Maschietto M, Vassanelli S. Mahmud M, et al. J Neurosci Methods. 2011 Mar 15;196(1):141-50. doi: 10.1016/j.jneumeth.2010.11.024. Epub 2010 Dec 9. J Neurosci Methods. 2011. PMID: 21145917 - Semi-automatic identification of independent components representing EEG artifact.
Viola FC, Thorne J, Edmonds B, Schneider T, Eichele T, Debener S. Viola FC, et al. Clin Neurophysiol. 2009 May;120(5):868-77. doi: 10.1016/j.clinph.2009.01.015. Epub 2009 Apr 3. Clin Neurophysiol. 2009. PMID: 19345611 - Cognitive neuroscience of creativity: EEG based approaches.
Srinivasan N. Srinivasan N. Methods. 2007 May;42(1):109-16. doi: 10.1016/j.ymeth.2006.12.008. Methods. 2007. PMID: 17434421 Review. - [Removal of artifacts from EEG signal].
Du X, Li Y, Zhu Y, Ren Q, Zhao L. Du X, et al. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008 Apr;25(2):464-7, 471. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008. PMID: 18610643 Review. Chinese.
Cited by
- Channel-independent recreation of artefactual signals in chronically recorded local field potentials using machine learning.
Fabietti M, Mahmud M, Lotfi A. Fabietti M, et al. Brain Inform. 2022 Jan 7;9(1):1. doi: 10.1186/s40708-021-00149-x. Brain Inform. 2022. PMID: 34997378 Free PMC article. - Comparing Open-Source Toolboxes for Processing and Analysis of Spike and Local Field Potentials Data.
Unakafova VA, Gail A. Unakafova VA, et al. Front Neuroinform. 2019 Jul 30;13:57. doi: 10.3389/fninf.2019.00057. eCollection 2019. Front Neuroinform. 2019. PMID: 31417389 Free PMC article. Review. - Processing and Analysis of Multichannel Extracellular Neuronal Signals: State-of-the-Art and Challenges.
Mahmud M, Vassanelli S. Mahmud M, et al. Front Neurosci. 2016 Jun 2;10:248. doi: 10.3389/fnins.2016.00248. eCollection 2016. Front Neurosci. 2016. PMID: 27313507 Free PMC article. Review. - MEAnalyzer - a Spike Train Analysis Tool for Multi Electrode Arrays.
Dastgheyb RM, Yoo SW, Haughey NJ. Dastgheyb RM, et al. Neuroinformatics. 2020 Jan;18(1):163-179. doi: 10.1007/s12021-019-09431-0. Neuroinformatics. 2020. PMID: 31273627 - A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.
Regalia G, Coelli S, Biffi E, Ferrigno G, Pedrocchi A. Regalia G, et al. Comput Intell Neurosci. 2016;2016:8416237. doi: 10.1155/2016/8416237. Epub 2016 Apr 27. Comput Intell Neurosci. 2016. PMID: 27239191 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources