Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1 - PubMed (original) (raw)
. 2012 Jul 16;75(13):4124-38.
doi: 10.1016/j.jprot.2012.05.034. Epub 2012 May 27.
Affiliations
- PMID: 22647927
- DOI: 10.1016/j.jprot.2012.05.034
Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1
Carles Bonet-Costa et al. J Proteomics. 2012.
Abstract
Linker histone H1 is a major chromatin component that binds internucleosomal DNA and mediates the folding of nucleosomes into a higher-order structure, namely the 30-nm chromatin fiber. Multiple post-translational modifications (PTMs) of core histones H2A, H2B, H3 and H4 have been identified and their important contribution to the regulation of chromatin structure and function is firmly established. In contrast, little is known about histone H1 modifications and their function. Here we address this question in Drosophila melanogaster, which, in contrast to most eukaryotic species, contains a single histone H1 variant, dH1. For this purpose, we combined bottom-up and top-down mass-spectrometry strategies. Our results indicated that dH1 is extensively modified by phosphorylation, methylation, acetylation and ubiquitination, with most PTMs falling in the N-terminal domain. Interestingly, several dH1 N-terminal modifications have also been reported in specific human and/or mouse H1 variants, suggesting that they have conserved functions. In this regard, we also provide evidence for the contribution of one of such conserved PTMs, dimethylation of K27, to heterochromatin organization during mitosis. Furthermore, our results also identified multiple dH1 isoforms carrying several phosphorylations and/or methylations, illustrating the high structural heterogeneity of dH1. In particular, we identified several non-CDK sites at the N-terminal domain that appear to be hierarchically phosphorylated. This study provides the most comprehensive PTM characterization of any histone H1 variant to date.
Copyright © 2012 Elsevier B.V. All rights reserved.
Similar articles
- Identification of novel post-translational modifications in linker histones from chicken erythrocytes.
Sarg B, Lopez R, Lindner H, Ponte I, Suau P, Roque A. Sarg B, et al. J Proteomics. 2015 Jan 15;113:162-77. doi: 10.1016/j.jprot.2014.10.004. Epub 2014 Oct 14. J Proteomics. 2015. PMID: 25452131 - Dynamics and dispensability of variant-specific histone H1 Lys-26/Ser-27 and Thr-165 post-translational modifications.
Terme JM, Millán-Ariño L, Mayor R, Luque N, Izquierdo-Bouldstridge A, Bustillos A, Sampaio C, Canes J, Font I, Sima N, Sancho M, Torrente L, Forcales S, Roque A, Suau P, Jordan A. Terme JM, et al. FEBS Lett. 2014 Jun 27;588(14):2353-62. doi: 10.1016/j.febslet.2014.05.035. Epub 2014 May 27. FEBS Lett. 2014. PMID: 24873882 - Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue.
Wisniewski JR, Zougman A, Krüger S, Mann M. Wisniewski JR, et al. Mol Cell Proteomics. 2007 Jan;6(1):72-87. doi: 10.1074/mcp.M600255-MCP200. Epub 2006 Oct 15. Mol Cell Proteomics. 2007. PMID: 17043054 - New developments in post-translational modifications and functions of histone H2A variants.
Thambirajah AA, Li A, Ishibashi T, Ausió J. Thambirajah AA, et al. Biochem Cell Biol. 2009 Feb;87(1):7-17. doi: 10.1139/O08-103. Biochem Cell Biol. 2009. PMID: 19234519 Review. - The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics.
Izzo A, Schneider R. Izzo A, et al. Biochim Biophys Acta. 2016 Mar;1859(3):486-95. doi: 10.1016/j.bbagrm.2015.09.003. Epub 2015 Sep 5. Biochim Biophys Acta. 2016. PMID: 26348411 Review.
Cited by
- Dissecting the Interaction between Cryptochrome and Timeless Reveals Underpinnings of Light-Dependent Recognition.
Schneps CM, Dunleavy R, Crane BR. Schneps CM, et al. Biochemistry. 2024 Jan 31:10.1021/acs.biochem.3c00630. doi: 10.1021/acs.biochem.3c00630. Online ahead of print. Biochemistry. 2024. PMID: 38294880 - Molecular and Cellular Functions of the Linker Histone H1.2.
Lai S, Jia J, Cao X, Zhou PK, Gao S. Lai S, et al. Front Cell Dev Biol. 2022 Jan 11;9:773195. doi: 10.3389/fcell.2021.773195. eCollection 2021. Front Cell Dev Biol. 2022. PMID: 35087830 Free PMC article. Review. - Histone H1 Post-Translational Modifications: Update and Future Perspectives.
Andrés M, García-Gomis D, Ponte I, Suau P, Roque A. Andrés M, et al. Int J Mol Sci. 2020 Aug 18;21(16):5941. doi: 10.3390/ijms21165941. Int J Mol Sci. 2020. PMID: 32824860 Free PMC article. Review. - Dependence of Chromatosome Structure on Linker Histone Sequence and Posttranslational Modification.
Öztürk MA, Cojocaru V, Wade RC. Öztürk MA, et al. Biophys J. 2018 May 22;114(10):2363-2375. doi: 10.1016/j.bpj.2018.04.034. Epub 2018 May 11. Biophys J. 2018. PMID: 29759374 Free PMC article. - Emerging roles of linker histones in regulating chromatin structure and function.
Fyodorov DV, Zhou BR, Skoultchi AI, Bai Y. Fyodorov DV, et al. Nat Rev Mol Cell Biol. 2018 Mar;19(3):192-206. doi: 10.1038/nrm.2017.94. Epub 2017 Oct 11. Nat Rev Mol Cell Biol. 2018. PMID: 29018282 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous