On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes - PubMed (original) (raw)
. 2012 Aug 21;12(16):2865-73.
doi: 10.1039/c2lc40091j. Epub 2012 Jun 7.
Affiliations
- PMID: 22678065
- DOI: 10.1039/c2lc40091j
On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes
Aviad Hai et al. Lab Chip. 2012.
Abstract
This study demonstrates the use of on-chip gold mushroom-shaped microelectrodes (gMμEs) to generate localized electropores in the plasma membrane of adhering cultured neurons and to electrophysiologically monitor the ensuing membrane repair dynamics. Delivery of an alternating voltage pulse (0.5-1 V, 100 Hz, 300 ms) through an extracellularly positioned micrometer-sized gMμE electroporates the patch of plasma membrane facing the microelectrode. The repair dynamics of the electropores were analyzed by continuous monitoring of the neuron transmembrane potential, input resistance (R(in)) and action potential (AP) amplitude with an intracellular microelectrode and a number of neighbouring extracellular gMμEs. Electroporation by a gMμE is associated with local elevation of the free intracellular calcium concentration ([Ca(2+)](i)) around the gMμE. The membrane repair kinetics proceeds as an exponential process interrupted by abrupt recovery steps. These abrupt events are consistent with the "membrane patch model" of membrane repair in which patches of intracellular membrane fuse with the plasma membrane at the site of injury. Membrane electroporation by a single gMμE generates a neuron-gMμE configuration that permits recordings of attenuated intracellular action potentials. We conclude that the use of on-chip cultured neurons via a gMμE configuration provides a unique neuroelectronic interface that enables the selection of individual cells for electroporation, generates a confined electroporated membrane patch, monitors membrane repair dynamics and records attenuated intracellular action potentials.
Similar articles
- A feasibility study of multi-site,intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes.
Ojovan SM, Rabieh N, Shmoel N, Erez H, Maydan E, Cohen A, Spira ME. Ojovan SM, et al. Sci Rep. 2015 Sep 14;5:14100. doi: 10.1038/srep14100. Sci Rep. 2015. PMID: 26365404 Free PMC article. - On-chip, multisite extracellular and intracellular recordings from primary cultured skeletal myotubes.
Rabieh N, Ojovan SM, Shmoel N, Erez H, Maydan E, Spira ME. Rabieh N, et al. Sci Rep. 2016 Nov 4;6:36498. doi: 10.1038/srep36498. Sci Rep. 2016. PMID: 27812002 Free PMC article. - Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes.
Fendyur A, Spira ME. Fendyur A, et al. Front Neuroeng. 2012 Aug 24;5:21. doi: 10.3389/fneng.2012.00021. eCollection 2012. Front Neuroeng. 2012. PMID: 22936913 Free PMC article. - Multisite Intracellular Recordings by MEA.
Spira ME, Huang SH, Shmoel N, Erez H. Spira ME, et al. Adv Neurobiol. 2019;22:125-153. doi: 10.1007/978-3-030-11135-9_5. Adv Neurobiol. 2019. PMID: 31073934 Review. - Single-cell electroporation.
Olofsson J, Nolkrantz K, Ryttsén F, Lambie BA, Weber SG, Orwar O. Olofsson J, et al. Curr Opin Biotechnol. 2003 Feb;14(1):29-34. doi: 10.1016/s0958-1669(02)00003-4. Curr Opin Biotechnol. 2003. PMID: 12565999 Review.
Cited by
- High Density Individually Addressable Nanowire Arrays Record Intracellular Activity from Primary Rodent and Human Stem Cell Derived Neurons.
Liu R, Chen R, Elthakeb AT, Lee SH, Hinckley S, Khraiche ML, Scott J, Pre D, Hwang Y, Tanaka A, Ro YG, Matsushita AK, Dai X, Soci C, Biesmans S, James A, Nogan J, Jungjohann KL, Pete DV, Webb DB, Zou Y, Bang AG, Dayeh SA. Liu R, et al. Nano Lett. 2017 May 10;17(5):2757-2764. doi: 10.1021/acs.nanolett.6b04752. Epub 2017 Apr 10. Nano Lett. 2017. PMID: 28384403 Free PMC article. - Cell Membrane Disruption by Vertical Micro-/Nanopillars: Role of Membrane Bending and Traction Forces.
Capozza R, Caprettini V, Gonano CA, Bosca A, Moia F, Santoro F, De Angelis F. Capozza R, et al. ACS Appl Mater Interfaces. 2018 Aug 29;10(34):29107-29114. doi: 10.1021/acsami.8b08218. Epub 2018 Aug 21. ACS Appl Mater Interfaces. 2018. PMID: 30081625 Free PMC article. - Considerations and recent advances in nanoscale interfaces with neuronal and cardiac networks.
Tchoe Y, Lee J, Liu R, Bourhis AM, Vatsyayan R, Tonsfeldt KJ, Dayeh SA. Tchoe Y, et al. Appl Phys Rev. 2021 Dec;8(4):041317. doi: 10.1063/5.0052666. Appl Phys Rev. 2021. PMID: 34868443 Free PMC article. Review. - Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials.
Lin ZC, Xie C, Osakada Y, Cui Y, Cui B. Lin ZC, et al. Nat Commun. 2014;5:3206. doi: 10.1038/ncomms4206. Nat Commun. 2014. PMID: 24487777 Free PMC article. - Multisite Attenuated Intracellular Recordings by Extracellular Multielectrode Arrays, a Perspective.
Spira ME, Shmoel N, Huang SM, Erez H. Spira ME, et al. Front Neurosci. 2018 Apr 10;12:212. doi: 10.3389/fnins.2018.00212. eCollection 2018. Front Neurosci. 2018. PMID: 29692701 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous