Genetic dissection of the circuit for hand dexterity in primates - PubMed (original) (raw)
. 2012 Jul 12;487(7406):235-8.
doi: 10.1038/nature11206.
Ryosuke Matsui, Shigeki Kato, Taku Hasegawa, Hironori Kasahara, Kaoru Isa, Akiya Watakabe, Tetsuo Yamamori, Yukio Nishimura, Bror Alstermark, Dai Watanabe, Kazuto Kobayashi, Tadashi Isa
Affiliations
- PMID: 22722837
- DOI: 10.1038/nature11206
Genetic dissection of the circuit for hand dexterity in primates
Masaharu Kinoshita et al. Nature. 2012.
Abstract
It is generally accepted that the direct connection from the motor cortex to spinal motor neurons is responsible for dexterous hand movements in primates. However, the role of the 'phylogenetically older' indirect pathways from the motor cortex to motor neurons, mediated by spinal interneurons, remains elusive. Here we used a novel double-infection technique to interrupt the transmission through the propriospinal neurons (PNs), which act as a relay of the indirect pathway in macaque monkeys (Macaca fuscata and Macaca mulatta). The PNs were double infected by injection of a highly efficient retrograde gene-transfer vector into their target area and subsequent injection of adeno-associated viral vector at the location of cell somata. This method enabled reversible expression of green fluorescent protein (GFP)-tagged tetanus neurotoxin, thereby permitting the selective and temporal blockade of the motor cortex–PN–motor neuron pathway. This treatment impaired reach and grasp movements, revealing a critical role for the PN-mediated pathway in the control of hand dexterity. Anti-GFP immunohistochemistry visualized the cell bodies and axonal trajectories of the blocked PNs, which confirmed their anatomical connection to motor neurons. This pathway-selective and reversible technique for blocking neural transmission does not depend on cell-specific promoters or transgenic techniques, and is a new and powerful tool for functional dissection in system-level neuroscience studies.
Comment in
- Techniques: Propriospinal neurons - old but not forgotten.
Welberg L. Welberg L. Nat Rev Neurosci. 2012 Jul 4;13(8):517. doi: 10.1038/nrn3299. Nat Rev Neurosci. 2012. PMID: 22760178 No abstract available.
Similar articles
- Contribution of propriospinal neurons to recovery of hand dexterity after corticospinal tract lesions in monkeys.
Tohyama T, Kinoshita M, Kobayashi K, Isa K, Watanabe D, Kobayashi K, Liu M, Isa T. Tohyama T, et al. Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):604-609. doi: 10.1073/pnas.1610787114. Epub 2017 Jan 3. Proc Natl Acad Sci U S A. 2017. PMID: 28049844 Free PMC article. - Role of Direct vs. Indirect Pathways from the Motor Cortex to Spinal Motoneurons in the Control of Hand Dexterity.
Isa T, Kinoshita M, Nishimura Y. Isa T, et al. Front Neurol. 2013 Nov 19;4:191. doi: 10.3389/fneur.2013.00191. Front Neurol. 2013. PMID: 24312077 Free PMC article. Review. - [The corticospinal tract and its role in motor control].
Isa T. Isa T. Brain Nerve. 2012 Nov;64(11):1331-9. Brain Nerve. 2012. PMID: 23131745 Review. Japanese. - Double viral vector intersectional approaches for pathway-selective manipulation of motor functions and compensatory mechanisms.
Isa T. Isa T. Exp Neurol. 2022 Mar;349:113959. doi: 10.1016/j.expneurol.2021.113959. Epub 2021 Dec 23. Exp Neurol. 2022. PMID: 34953894 - Striking differences in transmission of corticospinal excitation to upper limb motoneurons in two primate species.
Nakajima K, Maier MA, Kirkwood PA, Lemon RN. Nakajima K, et al. J Neurophysiol. 2000 Aug;84(2):698-709. doi: 10.1152/jn.2000.84.2.698. J Neurophysiol. 2000. PMID: 10938297
Cited by
- Chimeric rabies SADB19-VSVg-pseudotyped lentiviral vectors mediate long-range retrograde transduction from the mouse spinal cord.
Schoderboeck L, Riad S, Bokor AM, Wicky HE, Strauss M, Bostina M, Oswald MJ, Empson RM, Hughes SM. Schoderboeck L, et al. Gene Ther. 2015 May;22(5):357-64. doi: 10.1038/gt.2015.3. Epub 2015 Jan 29. Gene Ther. 2015. PMID: 25630949 - Pushing the Rehabilitation Boundaries: Hand Motor Impairment Can Be Reduced in Chronic Stroke.
Mawase F, Cherry-Allen K, Xu J, Anaya M, Uehara S, Celnik P. Mawase F, et al. Neurorehabil Neural Repair. 2020 Aug;34(8):733-745. doi: 10.1177/1545968320939563. Neurorehabil Neural Repair. 2020. PMID: 32845230 Free PMC article. - Extensive somatosensory and motor corticospinal sprouting occurs following a central dorsal column lesion in monkeys.
Fisher KM, Lilak A, Garner J, Darian-Smith C. Fisher KM, et al. J Comp Neurol. 2018 Oct 15;526(15):2373-2387. doi: 10.1002/cne.24491. Epub 2018 Sep 25. J Comp Neurol. 2018. PMID: 30014461 Free PMC article. - Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part II.
Kolesov DV, Sokolinskaya EL, Lukyanov KA, Bogdanov AM. Kolesov DV, et al. Acta Naturae. 2021 Oct-Dec;13(4):17-32. doi: 10.32607/actanaturae.11415. Acta Naturae. 2021. PMID: 35127143 Free PMC article. - Applications of chemogenetics in non-human primates.
Raper J, Galvan A. Raper J, et al. Curr Opin Pharmacol. 2022 Jun;64:102204. doi: 10.1016/j.coph.2022.102204. Epub 2022 Mar 17. Curr Opin Pharmacol. 2022. PMID: 35307295 Free PMC article. Review.
References
- Hum Gene Ther. 2007 Nov;18(11):1141-51 - PubMed
- J Neurophysiol. 1999 Dec;82(6):3580-5 - PubMed
- Exp Brain Res. 1977 Sep 28;29(3-4):323-46 - PubMed
- Neurosci Res. 2009 Feb;63(2):149-54 - PubMed
- Prog Brain Res. 1982;57:381-403 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources