CTLA-4 blockade synergizes with cryoablation to mediate tumor rejection - PubMed (original) (raw)
CTLA-4 blockade synergizes with cryoablation to mediate tumor rejection
Rebecca Waitz et al. Oncoimmunology. 2012.
Abstract
We report that cryoablation of primary tumors synergizes with anti-CTLA-4 treatment to mediate rejection of secondary tumors in the TRAMP mouse model of prostate cancer. T cells, in particular CD8(+) T cells specific for the TRAMP antigen SPAS-1, were enriched in both secondary tumors and spleens of combination-treated mice.
Figures
Figure 1. Cryoablation needs to be combined with CTLA-4 blockade to generate systemic immunity of sufficient strength to reject a secondary tumor. (A) A primary TRAMP C2 tumor is inoculated into the left flank of a mouse and allowed to grow until it is large enough to cryoablate. Our model proposes that cryoablation results in the release of antigens, which are taken up by antigen presenting cells (cross-presentation). In the presence of CTLA-4 blockade, SPAS-1 specific T cells maximally proliferate in response to positive signals delivered by the engagement of T cell receptor with SPAS-1 peptide/MHC I complex and CD28 with B7. This enhanced proliferation results in the rejection of a secondary right flank tumor. (B) In the absence of CTLA-4 blockade, CTLA-4 dampens T cell proliferation and a second tumor grows uncontrolled. (C) In absence of cryoablation, diminished antigen cross-presentation results in limited cross-priming of SPAS-1 specific T cells. Even in the presence CTLA-4 blockade, proliferation of SPAS-1 specific T cells is insufficient to mediate rejection of the tumor.
Similar articles
- Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy.
Waitz R, Solomon SB, Petre EN, Trumble AE, Fassò M, Norton L, Allison JP. Waitz R, et al. Cancer Res. 2012 Jan 15;72(2):430-9. doi: 10.1158/0008-5472.CAN-11-1782. Epub 2011 Nov 22. Cancer Res. 2012. PMID: 22108823 Free PMC article. - SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: A prostate tumor antigen identified by CTLA-4 blockade.
Fassò M, Waitz R, Hou Y, Rim T, Greenberg NM, Shastri N, Fong L, Allison JP. Fassò M, et al. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3509-14. doi: 10.1073/pnas.0712269105. Epub 2008 Feb 26. Proc Natl Acad Sci U S A. 2008. PMID: 18303116 Free PMC article. - Breaking immune tolerance by targeting CD25+ regulatory T cells is essential for the anti-tumor effect of the CTLA-4 blockade in an HLA-DR transgenic mouse model of prostate cancer.
Klyushnenkova EN, Riabov VB, Kouiavskaia DV, Wietsma A, Zhan M, Alexander RB. Klyushnenkova EN, et al. Prostate. 2014 Oct;74(14):1423-32. doi: 10.1002/pros.22858. Epub 2014 Aug 11. Prostate. 2014. PMID: 25111463 - IL-15 in the Combination Immunotherapy of Cancer.
Waldmann TA, Dubois S, Miljkovic MD, Conlon KC. Waldmann TA, et al. Front Immunol. 2020 May 19;11:868. doi: 10.3389/fimmu.2020.00868. eCollection 2020. Front Immunol. 2020. PMID: 32508818 Free PMC article. Review. - CTLA-4 blockade increases antigen-specific CD8(+) T cells in prevaccinated patients with melanoma: three cases.
Yuan J, Ginsberg B, Page D, Li Y, Rasalan T, Gallardo HF, Xu Y, Adams S, Bhardwaj N, Busam K, Old LJ, Allison JP, Jungbluth A, Wolchok JD. Yuan J, et al. Cancer Immunol Immunother. 2011 Aug;60(8):1137-46. doi: 10.1007/s00262-011-1011-9. Epub 2011 Apr 5. Cancer Immunol Immunother. 2011. PMID: 21465316 Free PMC article. Review.
Cited by
- Pilot study of Tremelimumab with and without cryoablation in patients with metastatic renal cell carcinoma.
Campbell MT, Matin SF, Tam AL, Sheth RA, Ahrar K, Tidwell RS, Rao P, Karam JA, Wood CG, Tannir NM, Jonasch E, Gao J, Zurita AJ, Shah AY, Jindal S, Duan F, Basu S, Chen H, Espejo AB, Allison JP, Yadav SS, Sharma P. Campbell MT, et al. Nat Commun. 2021 Nov 4;12(1):6375. doi: 10.1038/s41467-021-26415-4. Nat Commun. 2021. PMID: 34737281 Free PMC article. Clinical Trial. - Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies.
Aghlara-Fotovat S, Nash A, Kim B, Krencik R, Veiseh O. Aghlara-Fotovat S, et al. Drug Deliv Transl Res. 2021 Dec;11(6):2394-2413. doi: 10.1007/s13346-021-01018-0. Epub 2021 Jun 26. Drug Deliv Transl Res. 2021. PMID: 34176099 Review. - Exploiting NK Cell Surveillance Pathways for Cancer Therapy.
Barrow AD, Colonna M. Barrow AD, et al. Cancers (Basel). 2019 Jan 8;11(1):55. doi: 10.3390/cancers11010055. Cancers (Basel). 2019. PMID: 30626155 Free PMC article. Review. - Robust Antitumor Responses Result from Local Chemotherapy and CTLA-4 Blockade.
Ariyan CE, Brady MS, Siegelbaum RH, Hu J, Bello DM, Rand J, Fisher C, Lefkowitz RA, Panageas KS, Pulitzer M, Vignali M, Emerson R, Tipton C, Robins H, Merghoub T, Yuan J, Jungbluth A, Blando J, Sharma P, Rudensky AY, Wolchok JD, Allison JP. Ariyan CE, et al. Cancer Immunol Res. 2018 Feb;6(2):189-200. doi: 10.1158/2326-6066.CIR-17-0356. Epub 2018 Jan 16. Cancer Immunol Res. 2018. PMID: 29339377 Free PMC article. Clinical Trial. - Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines.
Lohmueller J, Finn OJ. Lohmueller J, et al. Pharmacol Ther. 2017 Oct;178:31-47. doi: 10.1016/j.pharmthera.2017.03.008. Epub 2017 Mar 16. Pharmacol Ther. 2017. PMID: 28322974 Free PMC article. Review.
References
- van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190:355–66. doi: 10.1084/jem.190.3.355. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials