Comparative behavior of membrane protein-antibody complexes on motile fibroblasts: implications for a mechanism of capping - PubMed (original) (raw)

Comparative behavior of membrane protein-antibody complexes on motile fibroblasts: implications for a mechanism of capping

B F Holifield et al. J Cell Biol. 1990 Dec.

Abstract

A characteristic feature of fibroblast locomotory activity is the rearward transport across the leading lamella of various materials used to mark the cell surface. The two processes most frequently invoked as explanations for this transport phenomenon, called capping, are (a) retrograde membrane flow arising from directed membrane insertion and (b) rearward cortical cytoskeletal flow arising from cytoskeletal assembly and contraction. The retrograde lipid flow hypothesis, the most current form of the membrane flow scheme, makes explicit predictions about the movement of membrane proteins subjected to the postulated rearward lipid flow. Several of these predictions were tested by comparing the behavior of four membrane proteins, Pgp-1, Thy-1, H-2, and influenza HA0, identified by fluorescent antibodies. With the exception of Pgp-1, these proteins were uniformly distributed under nonaggregated conditions but were capped when aggregated into patches. In contrast, Pgp-1 was capped in similar time frames in both nonaggregated and aggregated states where the lateral diffusion coefficients were very different. Furthermore, the capping behavior of two tagged membrane proteins was markedly different yet both had similar diffusion coefficients. The results from these tests disprove the bulk membrane flow hypothesis and are at odds with explicit predictions of the retrograde lipid flow hypothesis for the mechanism of capping. This work, therefore, supports the alternative cytoskeletal-based mechanism for driving capping. Requirements for coupling cytoskeletal movement to membrane components are discussed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Immunol. 1982 Mar;128(3):1198-204 - PubMed
    1. J Cell Biol. 1981 Nov;91(2 Pt 1):528-36 - PubMed
    1. Cold Spring Harb Symp Quant Biol. 1982;46 Pt 2:707-12 - PubMed
    1. Nature. 1983 Apr 7;302(5908):532-4 - PubMed
    1. Contemp Top Mol Immunol. 1983;9:1-63 - PubMed

MeSH terms

Substances

LinkOut - more resources