SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors - PubMed (original) (raw)
. 2012 Jul 19;487(7407):380-4.
doi: 10.1038/nature11207.
Elena Enzo, Mattia Forcato, Francesca Zanconato, Anna Parenti, Elena Rampazzo, Giuseppe Basso, Genesio Leo, Antonio Rosato, Silvio Bicciato, Michelangelo Cordenonsi, Stefano Piccolo
Affiliations
- PMID: 22801492
- DOI: 10.1038/nature11207
SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors
Marco Montagner et al. Nature. 2012.
Abstract
The molecular determinants of malignant cell behaviours in breast cancer remain only partially understood. Here we show that SHARP1 (also known as BHLHE41 or DEC2) is a crucial regulator of the invasive and metastatic phenotype in triple-negative breast cancer (TNBC), one of the most aggressive types of breast cancer. SHARP1 is regulated by the p63 metastasis suppressor and inhibits TNBC aggressiveness through inhibition of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α (HIFs). SHARP1 opposes HIF-dependent TNBC cell migration in vitro, and invasive or metastatic behaviours in vivo. SHARP1 is required, and sufficient, to limit expression of HIF-target genes. In primary TNBC, endogenous SHARP1 levels are inversely correlated with those of HIF targets. Mechanistically, SHARP1 binds to HIFs and promotes HIF proteasomal degradation by serving as the HIF-presenting factor to the proteasome. This process is independent of pVHL (von Hippel-Lindau tumour suppressor), hypoxia and the ubiquitination machinery. SHARP1 therefore determines the intrinsic instability of HIF proteins to act in parallel to, and cooperate with, oxygen levels. This work sheds light on the mechanisms and pathways by which TNBC acquires invasiveness and metastatic propensity.
Comment in
- Tumour suppressors: At the SHARP end of metastasis.
Burgess DJ. Burgess DJ. Nat Rev Cancer. 2012 Sep;12(9):580-1. doi: 10.1038/nrc3347. Epub 2012 Aug 9. Nat Rev Cancer. 2012. PMID: 22875017 No abstract available.
Similar articles
- p63, Sharp1, and HIFs: master regulators of metastasis in triple-negative breast cancer.
Piccolo S, Enzo E, Montagner M. Piccolo S, et al. Cancer Res. 2013 Aug 15;73(16):4978-81. doi: 10.1158/0008-5472.CAN-13-0962. Epub 2013 Aug 2. Cancer Res. 2013. PMID: 23913939 Review. - SHARP1 suppresses angiogenesis of endometrial cancer by decreasing hypoxia-inducible factor-1α level.
Liao Y, Lu W, Che Q, Yang T, Qiu H, Zhang H, He X, Wang J, Qiu M, Zou Y, Gu W, Wan X. Liao Y, et al. PLoS One. 2014 Jun 11;9(6):e99907. doi: 10.1371/journal.pone.0099907. eCollection 2014. PLoS One. 2014. PMID: 24918449 Free PMC article. - SCFβTrCP-mediated degradation of SHARP1 in triple-negative breast cancer.
Enriqué Steinberg JH, Rossi FA, Magliozzi R, Yuniati L, Santucci M, Rossi M, Guardavaccaro D, Lauriola A. Enriqué Steinberg JH, et al. Cell Death Dis. 2023 Nov 8;14(11):726. doi: 10.1038/s41419-023-06253-6. Cell Death Dis. 2023. PMID: 37938564 Free PMC article. - pVHL-mediated degradation of HIF-2α regulates estrogen receptor α expression in normoxic breast cancer cells.
Higashimura Y, Kitakaze T, Harada N, Inui H, Nakano Y, Yamaji R. Higashimura Y, et al. FEBS Lett. 2016 Aug;590(16):2690-9. doi: 10.1002/1873-3468.12265. Epub 2016 Jul 4. FEBS Lett. 2016. PMID: 27323688 - The HIF pathway: implications for patterns of gene expression in cancer.
Wykoff CC, Pugh CW, Harris AL, Maxwell PH, Ratcliffe PJ. Wykoff CC, et al. Novartis Found Symp. 2001;240:212-25; discussion 225-31. doi: 10.1002/0470868716.ch15. Novartis Found Symp. 2001. PMID: 11727931 Review.
Cited by
- DEC2 Serves as Potential Tumor Suppressor in Breast Carcinoma.
Fang W, Li Q, Wang M, Zheng M, Xu H. Fang W, et al. Dis Markers. 2020 Oct 10;2020:6053154. doi: 10.1155/2020/6053154. eCollection 2020. Dis Markers. 2020. PMID: 33101542 Free PMC article. - The ALK-1/SMAD/ATOH8 axis attenuates hypoxic responses and protects against the development of pulmonary arterial hypertension.
Morikawa M, Mitani Y, Holmborn K, Kato T, Koinuma D, Maruyama J, Vasilaki E, Sawada H, Kobayashi M, Ozawa T, Morishita Y, Bessho Y, Maeda S, Ledin J, Aburatani H, Kageyama R, Maruyama K, Heldin CH, Miyazono K. Morikawa M, et al. Sci Signal. 2019 Nov 12;12(607):eaay4430. doi: 10.1126/scisignal.aay4430. Sci Signal. 2019. PMID: 31719172 Free PMC article. - SDPR functions as a metastasis suppressor in breast cancer by promoting apoptosis.
Ozturk S, Papageorgis P, Wong CK, Lambert AW, Abdolmaleky HM, Thiagalingam A, Cohen HT, Thiagalingam S. Ozturk S, et al. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):638-43. doi: 10.1073/pnas.1514663113. Epub 2016 Jan 6. Proc Natl Acad Sci U S A. 2016. PMID: 26739564 Free PMC article. - Landscape of transcriptional deregulations in the preeclamptic placenta.
Vaiman D, Calicchio R, Miralles F. Vaiman D, et al. PLoS One. 2013 Jun 13;8(6):e65498. doi: 10.1371/journal.pone.0065498. Print 2013. PLoS One. 2013. PMID: 23785430 Free PMC article. - Activating transcription factor 3 mediates apoptosis and cell cycle arrest in TP53-mutated anaplastic thyroid cancer cells.
Kooti A, Abuei H, Jaafari A, Taki S, Saberzadeh J, Farhadi A. Kooti A, et al. Thyroid Res. 2024 Aug 1;17(1):12. doi: 10.1186/s13044-024-00202-x. Thyroid Res. 2024. PMID: 39085957 Free PMC article.
References
- Am J Clin Oncol. 2010 Dec;33(6):637-45 - PubMed
- J Biol Chem. 2002 May 24;277(21):18817-26 - PubMed
- Cancer Res. 2008 Nov 15;68(22):9212-20 - PubMed
- Mol Cell. 2008 May 23;30(4):393-402 - PubMed
- J Biol Chem. 2007 May 25;282(21):15498-505 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials