The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome - PubMed (original) (raw)
. 2012 Sep;85(6):1057-71.
doi: 10.1111/j.1365-2958.2012.08172.x. Epub 2012 Jul 27.
Affiliations
- PMID: 22834929
- DOI: 10.1111/j.1365-2958.2012.08172.x
Free article
The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome
Maria-José Lopez-Sanchez et al. Mol Microbiol. 2012 Sep.
Free article
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) confer immunity against mobile genetic elements (MGEs) in prokaryotes. Streptococcus agalactiae, a leading cause of neonatal infections contains in its genome two CRISPR/Cas systems. We show that type 1-C CRISPR2 is present in few strains but type 2-A CRISPR1 is ubiquitous. Comparative sequence analysis of the CRISPR1 spacer content of 351 S. agalactiae strains revealed that it is extremely diverse due to the acquisition of new spacers, spacer duplications and spacer deletions that witness the dynamics of this system. The spacer content profile mirrors the S. agalactiae population structure. Transfer of a conjugative transposon targeted by CRISPR1 selected for spacer rearrangements, suggesting that deletions and duplications pre-exist in the population. The comparison of protospacers located within MGE or the core genome and protospacer-associated motif-shuffling demonstrated that the GG motif is sufficient to discriminate self and non-self and for spacer selection and integration. Strikingly more than 40% of the 949 different CRISPR1 spacers identified target MGEs found in S. agalactiae genomes. We thus propose that the S. agalactiae type II-A CRISPR1/Cas system modulates the cohabitation of the species with its mobilome, as such contributing to the diversity of MGEs in the population.
© 2012 Blackwell Publishing Ltd.
Comment in
- The rise and fall of CRISPRs--dynamics of spacer acquisition and loss.
Westra ER, Brouns SJ. Westra ER, et al. Mol Microbiol. 2012 Sep;85(6):1021-5. doi: 10.1111/j.1365-2958.2012.08170.x. Epub 2012 Jul 23. Mol Microbiol. 2012. PMID: 22804962
Similar articles
- The rise and fall of CRISPRs--dynamics of spacer acquisition and loss.
Westra ER, Brouns SJ. Westra ER, et al. Mol Microbiol. 2012 Sep;85(6):1021-5. doi: 10.1111/j.1365-2958.2012.08170.x. Epub 2012 Jul 23. Mol Microbiol. 2012. PMID: 22804962 - Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae.
Semenova E, Nagornykh M, Pyatnitskiy M, Artamonova II, Severinov K. Semenova E, et al. FEMS Microbiol Lett. 2009 Jul;296(1):110-6. doi: 10.1111/j.1574-6968.2009.01626.x. Epub 2009 May 7. FEMS Microbiol Lett. 2009. PMID: 19459963 - Evolution and Diversity of the Antimicrobial Resistance Associated Mobilome in Streptococcus suis: A Probable Mobile Genetic Elements Reservoir for Other Streptococci.
Huang J, Ma J, Shang K, Hu X, Liang Y, Li D, Wu Z, Dai L, Chen L, Wang L. Huang J, et al. Front Cell Infect Microbiol. 2016 Oct 7;6:118. doi: 10.3389/fcimb.2016.00118. eCollection 2016. Front Cell Infect Microbiol. 2016. PMID: 27774436 Free PMC article. - Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.
Al-Attar S, Westra ER, van der Oost J, Brouns SJ. Al-Attar S, et al. Biol Chem. 2011 Apr;392(4):277-89. doi: 10.1515/BC.2011.042. Epub 2011 Feb 7. Biol Chem. 2011. PMID: 21294681 Review. - Surface proteins of Streptococcus agalactiae and horizontal gene transfer.
Bröker G, Spellerberg B. Bröker G, et al. Int J Med Microbiol. 2004 Sep;294(2-3):169-75. doi: 10.1016/j.ijmm.2004.06.018. Int J Med Microbiol. 2004. PMID: 15493827 Review.
Cited by
- CRISPR Content Correlates with the Pathogenic Potential of Escherichia coli.
García-Gutiérrez E, Almendros C, Mojica FJ, Guzmán NM, García-Martínez J. García-Gutiérrez E, et al. PLoS One. 2015 Jul 2;10(7):e0131935. doi: 10.1371/journal.pone.0131935. eCollection 2015. PLoS One. 2015. PMID: 26136211 Free PMC article. - Ecophysiological Features Shape the Distribution of Prophages and CRISPR in Sulfate Reducing Prokaryotes.
Orellana R, Arancibia A, Badilla L, Acosta J, Arancibia G, Escar R, Ferrada G, Seeger M. Orellana R, et al. Microorganisms. 2021 Apr 27;9(5):931. doi: 10.3390/microorganisms9050931. Microorganisms. 2021. PMID: 33925267 Free PMC article. - Genome-Wide fitness analysis of group B Streptococcus in human amniotic fluid reveals a transcription factor that controls multiple virulence traits.
Dammann AN, Chamby AB, Catomeris AJ, Davidson KM, Tettelin H, van Pijkeren JP, Gopalakrishna KP, Keith MF, Elder JL, Ratner AJ, Hooven TA. Dammann AN, et al. PLoS Pathog. 2021 Mar 8;17(3):e1009116. doi: 10.1371/journal.ppat.1009116. eCollection 2021 Mar. PLoS Pathog. 2021. PMID: 33684178 Free PMC article. - Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition.
Westra ER, Semenova E, Datsenko KA, Jackson RN, Wiedenheft B, Severinov K, Brouns SJ. Westra ER, et al. PLoS Genet. 2013;9(9):e1003742. doi: 10.1371/journal.pgen.1003742. Epub 2013 Sep 5. PLoS Genet. 2013. PMID: 24039596 Free PMC article. - Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria.
Dy RL, Pitman AR, Fineran PC. Dy RL, et al. Mob Genet Elements. 2013 Sep 1;3(5):e26831. doi: 10.4161/mge.26831. Epub 2013 Oct 25. Mob Genet Elements. 2013. PMID: 24251073 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources