Metabolism and pharmacokinetics of JM6 in mice: JM6 is not a prodrug for Ro-61-8048 - PubMed (original) (raw)
. 2012 Dec;40(12):2297-306.
doi: 10.1124/dmd.112.046532. Epub 2012 Aug 31.
Dawn Yates, Kathryn Lyons, Kim Matthews, Steve Clifton, Tania Mead, Michael Prime, Dirk Winkler, Catherine O'Connell, Daryl Walter, Leticia Toledo-Sherman, Ignacio Munoz-Sanjuan, Celia Dominguez
Affiliations
- PMID: 22942319
- DOI: 10.1124/dmd.112.046532
Metabolism and pharmacokinetics of JM6 in mice: JM6 is not a prodrug for Ro-61-8048
Maria G Beconi et al. Drug Metab Dispos. 2012 Dec.
Abstract
Understanding whether regulation of tryptophan metabolites can ameliorate neurodegeneration is of high interest to investigators. A recent publication describes 3,4-dimethoxy-N-(4-(3-nitrophenyl)-5-(piperidin-1-ylmethyl)thiazol-2-yl)benzenesulfonamide (JM6) as a novel prodrug for the kynurenine 3-monooxygenase (KMO) inhibitor 3,4-dimethoxy-N-(4-(3-nitrophenyl)thiazol-2-yl)benzenesulfonamide (Ro-61-8048) that elicits therapeutic effects in mouse models of Huntington's and Alzheimer's diseases (Cell 145:863-874, 2011). Our evaluation of the metabolism and pharmacokinetics of JM6 and Ro-61-8048 indicate instead that Ro-61-8048 concentrations in mouse plasma after JM6 administration originate from a Ro-61-8048 impurity (<0.1%) in JM6. After a 0.05 mg/kg Ro-61-8048 oral dose alone or coadministered with 10 mg/kg JM6 to mice, the Ro-61-8048 areas under the concentration-time curves (AUCs) from 0 to infinity were similar (4300 and 4900 nM × h, respectively), indicating no detectable contributions of JM6 metabolism to the Ro-61-8048 AUCs. JM6 was stable in incubations under acidic conditions and Ro-61-8048 was not a product of JM6 metabolism in vitro (plasma, blood, or hepatic models). Species differences in the quantitative rate of oxidative metabolism indicate that major circulating JM6 metabolite(s) in mice are unlikely to be major in humans: JM6 is rapidly metabolized via the piperidyl moiety in mouse (forming an iminium ion reactive intermediate) but is slowly metabolized in human (in vitro), primarily via O-dealkylation at the phenyl ring. Our data indicate that JM6 is not a prodrug for Ro-61-8048 and is not a potent KMO inhibitor.
Similar articles
- Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL.
Kamath AV, Wang J, Lee FY, Marathe PH. Kamath AV, et al. Cancer Chemother Pharmacol. 2008 Mar;61(3):365-76. doi: 10.1007/s00280-007-0478-8. Epub 2007 Apr 11. Cancer Chemother Pharmacol. 2008. PMID: 17429625 - Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration.
Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ. Zwilling D, et al. Cell. 2011 Jun 10;145(6):863-74. doi: 10.1016/j.cell.2011.05.020. Cell. 2011. PMID: 21640374 Free PMC article. - In vitro hepatic metabolism of cediranib, a potent vascular endothelial growth factor tyrosine kinase inhibitor: interspecies comparison and human enzymology.
Schulz-Utermoehl T, Spear M, Pollard CR, Pattison C, Rollison H, Sarda S, Ward M, Bushby N, Jordan A, Harrison M. Schulz-Utermoehl T, et al. Drug Metab Dispos. 2010 Oct;38(10):1688-97. doi: 10.1124/dmd.110.033159. Epub 2010 Jul 15. Drug Metab Dispos. 2010. PMID: 20634336 - NTP Technical Report on the metabolism, toxicity and predicted carcinogenicity of diazoaminobenzene (CAS No. 136-35-6).
Ress NB; National Toxicology Program. Ress NB, et al. Toxic Rep Ser. 2002 Sep;(73):1-23, A1-C6. Toxic Rep Ser. 2002. PMID: 12370695 Review.
Cited by
- Redox signaling and Alzheimer's disease: from pathomechanism insights to biomarker discovery and therapy strategy.
Chen YY, Wang MC, Wang YN, Hu HH, Liu QQ, Liu HJ, Zhao YY. Chen YY, et al. Biomark Res. 2020 Sep 11;8:42. doi: 10.1186/s40364-020-00218-z. eCollection 2020. Biomark Res. 2020. PMID: 32944245 Free PMC article. Review. - Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities.
Pocivavsek A, Schwarcz R, Erhardt S. Pocivavsek A, et al. Pharmacol Rev. 2024 Oct 16;76(6):978-1008. doi: 10.1124/pharmrev.124.000239. Pharmacol Rev. 2024. PMID: 39304346 Free PMC article. Review. - Changing the face of kynurenines and neurotoxicity: therapeutic considerations.
Bohár Z, Toldi J, Fülöp F, Vécsei L. Bohár Z, et al. Int J Mol Sci. 2015 Apr 29;16(5):9772-93. doi: 10.3390/ijms16059772. Int J Mol Sci. 2015. PMID: 25938971 Free PMC article. Review. - Inflammation control and improvement of cognitive function in COVID-19 infections: is there a role for kynurenine 3-monooxygenase inhibition?
Collier ME, Zhang S, Scrutton NS, Giorgini F. Collier ME, et al. Drug Discov Today. 2021 Jun;26(6):1473-1481. doi: 10.1016/j.drudis.2021.02.009. Epub 2021 Feb 18. Drug Discov Today. 2021. PMID: 33609782 Free PMC article. Review. - Role of the Kynurenine Metabolism Pathway in Inflammation-Induced Depression: Preclinical Approaches.
Dantzer R. Dantzer R. Curr Top Behav Neurosci. 2017;31:117-138. doi: 10.1007/7854_2016_6. Curr Top Behav Neurosci. 2017. PMID: 27225497 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Chemical Information
Research Materials