A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis - PubMed (original) (raw)
doi: 10.1093/bib/bbs046. Epub 2012 Sep 17.
Andrea Rau, Julie Aubert, Christelle Hennequet-Antier, Marine Jeanmougin, Nicolas Servant, Céline Keime, Guillemette Marot, David Castel, Jordi Estelle, Gregory Guernec, Bernd Jagla, Luc Jouneau, Denis Laloë, Caroline Le Gall, Brigitte Schaëffer, Stéphane Le Crom, Mickaël Guedj, Florence Jaffrézic; French StatOmique Consortium
Affiliations
- PMID: 22988256
- DOI: 10.1093/bib/bbs046
A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
Marie-Agnès Dillies et al. Brief Bioinform. 2013 Nov.
Abstract
During the last 3 years, a number of approaches for the normalization of RNA sequencing data have emerged in the literature, differing both in the type of bias adjustment and in the statistical strategy adopted. However, as data continue to accumulate, there has been no clear consensus on the appropriate normalization method to be used or the impact of a chosen method on the downstream analysis. In this work, we focus on a comprehensive comparison of seven recently proposed normalization methods for the differential analysis of RNA-seq data, with an emphasis on the use of varied real and simulated datasets involving different species and experimental designs to represent data characteristics commonly observed in practice. Based on this comparison study, we propose practical recommendations on the appropriate normalization method to be used and its impact on the differential analysis of RNA-seq data.
Keywords: RNA-seq; differential analysis; high-throughput sequencing; normalization.
Similar articles
- The Impact of Normalization Methods on RNA-Seq Data Analysis.
Zyprych-Walczak J, Szabelska A, Handschuh L, Górczak K, Klamecka K, Figlerowicz M, Siatkowski I. Zyprych-Walczak J, et al. Biomed Res Int. 2015;2015:621690. doi: 10.1155/2015/621690. Epub 2015 Jun 15. Biomed Res Int. 2015. PMID: 26176014 Free PMC article. - Assessment of Single Cell RNA-Seq Normalization Methods.
Ding B, Zheng L, Wang W. Ding B, et al. G3 (Bethesda). 2017 Jul 5;7(7):2039-2045. doi: 10.1534/g3.117.040683. G3 (Bethesda). 2017. PMID: 28468817 Free PMC article. - A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.
Li X, Brock GN, Rouchka EC, Cooper NGF, Wu D, O'Toole TE, Gill RS, Eteleeb AM, O'Brien L, Rai SN. Li X, et al. PLoS One. 2017 May 1;12(5):e0176185. doi: 10.1371/journal.pone.0176185. eCollection 2017. PLoS One. 2017. PMID: 28459823 Free PMC article. - Normalization for Single-Cell RNA-Seq Data Analysis.
Bacher R. Bacher R. Methods Mol Biol. 2019;1935:11-23. doi: 10.1007/978-1-4939-9057-3_2. Methods Mol Biol. 2019. PMID: 30758817 Review. - Differential Expression Analysis of RNA-seq Reads: Overview, Taxonomy, and Tools.
Chowdhury HA, Bhattacharyya DK, Kalita JK. Chowdhury HA, et al. IEEE/ACM Trans Comput Biol Bioinform. 2020 Mar-Apr;17(2):566-586. doi: 10.1109/TCBB.2018.2873010. Epub 2018 Oct 1. IEEE/ACM Trans Comput Biol Bioinform. 2020. PMID: 30281477 Review.
Cited by
- SimSeq: a nonparametric approach to simulation of RNA-sequence datasets.
Benidt S, Nettleton D. Benidt S, et al. Bioinformatics. 2015 Jul 1;31(13):2131-40. doi: 10.1093/bioinformatics/btv124. Epub 2015 Feb 26. Bioinformatics. 2015. PMID: 25725090 Free PMC article. - Selecting Classification Methods for Small Samples of Next-Generation Sequencing Data.
Zhu J, Yuan Z, Shu L, Liao W, Zhao M, Zhou Y. Zhu J, et al. Front Genet. 2021 Mar 4;12:642227. doi: 10.3389/fgene.2021.642227. eCollection 2021. Front Genet. 2021. PMID: 33747051 Free PMC article. - Diagnostic biases in translational bioinformatics.
Han H. Han H. BMC Med Genomics. 2015 Aug 1;8:46. doi: 10.1186/s12920-015-0116-y. BMC Med Genomics. 2015. PMID: 26232237 Free PMC article. - On the study of microbial transcriptomes using second- and third-generation sequencing technologies.
Choi SC. Choi SC. J Microbiol. 2016 Aug;54(8):527-36. doi: 10.1007/s12275-016-6233-2. Epub 2016 Aug 2. J Microbiol. 2016. PMID: 27480632 Review. - Two sets of RNAi components are required for heterochromatin formation in trans triggered by truncated transgenes.
Götz U, Marker S, Cheaib M, Andresen K, Shrestha S, Durai DA, Nordström KJ, Schulz MH, Simon M. Götz U, et al. Nucleic Acids Res. 2016 Jul 8;44(12):5908-23. doi: 10.1093/nar/gkw267. Epub 2016 Apr 16. Nucleic Acids Res. 2016. PMID: 27085807 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources