Atomic charges for DNA constituents derived from single-crystal X-ray diffraction data - PubMed (original) (raw)
Atomic charges for DNA constituents derived from single-crystal X-ray diffraction data
D A Pearlman et al. J Mol Biol. 1990.
Abstract
We have derived a complete set of atomic charges for DNA from very high resolution, low temperature, single-crystal X-ray diffraction data, collected for a variety of nucleosides and nucleotides: cytidine; deoxycytidine 5'-monophosphate; deoxythymidine; guanosine 5'-monophosphate; deoxyadenosine; adenosine. This set of charges represents the first experimentally based parameterization of an important term in the energy function used in most modeling of DNA. The resulting charges are in good agreement with chemical intuition and experimental observations. They also agree qualitatively with the theoretically derived values now commonly used, but numerous and significant quantitative differences are observed. Possible reasons for the quantitative disagreement are discussed. An averaged set of charges (derived from the experimental results), which can be used in DNA modeling calculations, is presented.
Similar articles
- Determinations of atomic partial charges for nucleic acid constituents from x-ray diffraction data. I. 2'-Deoxycytidine-5'-monophosphate.
Pearlman DA, Kim SH. Pearlman DA, et al. Biopolymers. 1985 Feb;24(2):327-57. doi: 10.1002/bip.360240204. Biopolymers. 1985. PMID: 3978222 No abstract available. - [X-ray structural studies of nucleic acid molecular structure and nucleic acid-protein interaction mechanism].
Tomita K. Tomita K. Yakugaku Zasshi. 1989 Jul;109(7):439-59. doi: 10.1248/yakushi1947.109.7_439. Yakugaku Zasshi. 1989. PMID: 2479734 Review. Japanese. - Oligonucleotide structure: a decade of results from single crystal X-ray diffraction studies.
Kennard O, Hunter WN. Kennard O, et al. Q Rev Biophys. 1989 Aug;22(3):327-79. doi: 10.1017/s0033583500002997. Q Rev Biophys. 1989. PMID: 2695962 Review. No abstract available.
Cited by
- Molecular dynamics simulations of solvated yeast tRNA(Asp).
Auffinger P, Louise-May S, Westhof E. Auffinger P, et al. Biophys J. 1999 Jan;76(1 Pt 1):50-64. doi: 10.1016/S0006-3495(99)77177-8. Biophys J. 1999. PMID: 9876122 Free PMC article. - Molecular electrostatic potentials from crystal diffraction: the neurotransmitter gamma-aminobutyric acid.
Stewart RF, Craven BM. Stewart RF, et al. Biophys J. 1993 Sep;65(3):998-1005. doi: 10.1016/S0006-3495(93)81142-1. Biophys J. 1993. PMID: 8241415 Free PMC article. - H-bond stability in the tRNA(Asp) anticodon hairpin: 3 ns of multiple molecular dynamics simulations.
Auffinger P, Westhof E. Auffinger P, et al. Biophys J. 1996 Aug;71(2):940-54. doi: 10.1016/S0006-3495(96)79298-6. Biophys J. 1996. PMID: 8842234 Free PMC article. - Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA.
Wagner K, Keyes E, Kephart TW, Edwards G. Wagner K, et al. Biophys J. 1997 Jul;73(1):21-30. doi: 10.1016/S0006-3495(97)78043-3. Biophys J. 1997. PMID: 9199767 Free PMC article. - Electrostatics of a simple membrane model using Green's functions formalism.
von Kitzing E, Soumpasis DM. von Kitzing E, et al. Biophys J. 1996 Aug;71(2):795-810. doi: 10.1016/S0006-3495(96)79281-0. Biophys J. 1996. PMID: 8842218 Free PMC article.