Interferon-γ signaling inhibition ameliorates angiotensin II-induced cardiac damage - PubMed (original) (raw)
Interferon-γ signaling inhibition ameliorates angiotensin II-induced cardiac damage
Lajos Markó et al. Hypertension. 2012 Dec.
Abstract
Angiotensin (Ang) II induces vascular injury in part by activating innate and adaptive immunity; however, the mechanisms are unclear. We investigated the role of interferon (IFN)-γ and interleukin (IL)-23 signaling. We infused Ang II into IFN-γ receptor (IFN-γR) knockout mice and wild-type controls, as well as into mice treated with neutralizing antibodies against IL-23 receptor and IL-17A. Ang II-treated IFN-γR knockout mice exhibited reduced cardiac hypertrophy, reduced cardiac macrophage and T-cell infiltration, less fibrosis, and less arrhythmogenic electric remodeling independent of blood pressure changes. In contrast, IL-23 receptor antibody treatment did not reduce cardiac hypertrophy, fibrosis, or electric remodeling despite mildly reduced inflammation. IL-17A antibody treatment behaved similarly. In the kidney, IFN-γR deficiency reduced inflammation and tubulointerstitial damage and improved glomerular filtration rate. Nonetheless, albuminuria was increased compared with Ang II-treated wild-type controls. The glomeruli of Ang II-treated IFN-γR knockout mice exhibited fewer podocytes, less nephrin and synaptopodin staining, and impaired podocyte autophagy. Thus, IFN-γ blockade, but not IL-23 receptor antibody treatment, protects from Ang II-induced cardiac damage and electric remodeling. In the kidney, IFN-γ signaling acts in a cell type-specific manner. Glomerular filtration rate is preserved in the absence of the IFN-γR, whereas podocytes may require the IFN-γR in the presence of Ang II for normal integrity and function.
Similar articles
- Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ-/- and interleukin-17A-/- mice.
Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, Delpire E, Harrison DG, McDonough AA. Kamat NV, et al. Hypertension. 2015 Mar;65(3):569-76. doi: 10.1161/HYPERTENSIONAHA.114.04975. Epub 2015 Jan 19. Hypertension. 2015. PMID: 25601932 Free PMC article. - B-cell lymphoma/leukaemia 10 and angiotensin II-induced kidney injury.
Markó L, Park JK, Henke N, Rong S, Balogh A, Klamer S, Bartolomaeus H, Wilck N, Ruland J, Forslund SK, Luft FC, Dechend R, Müller DN. Markó L, et al. Cardiovasc Res. 2020 Apr 1;116(5):1059-1070. doi: 10.1093/cvr/cvz169. Cardiovasc Res. 2020. PMID: 31241148 - Pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 attenuates angiotensin II/salt-induced aortic remodeling.
Weisberg AD, Albornoz F, Griffin JP, Crandall DL, Elokdah H, Fogo AB, Vaughan DE, Brown NJ. Weisberg AD, et al. Arterioscler Thromb Vasc Biol. 2005 Feb;25(2):365-71. doi: 10.1161/01.ATV.0000152356.85791.52. Epub 2004 Dec 2. Arterioscler Thromb Vasc Biol. 2005. PMID: 15576638 - The role of autophagy in angiotensin II-induced pathological cardiac hypertrophy.
Zhou L, Ma B, Han X. Zhou L, et al. J Mol Endocrinol. 2016 Nov;57(4):R143-R152. doi: 10.1530/JME-16-0086. Epub 2016 Sep 12. J Mol Endocrinol. 2016. PMID: 27620875 Review. - Mechanism of cardiac fibrosis by angiotensin. New insight revealed by genetic engineering.
Matsusaka T, Katori H, Homma T, Ichikawa I. Matsusaka T, et al. Trends Cardiovasc Med. 1999 Oct;9(7):180-4. doi: 10.1016/s1050-1738(00)00018-9. Trends Cardiovasc Med. 1999. PMID: 10881748 Review.
Cited by
- The role of IL-17 family cytokines in cardiac fibrosis.
Huang L. Huang L. Front Cardiovasc Med. 2024 Oct 22;11:1470362. doi: 10.3389/fcvm.2024.1470362. eCollection 2024. Front Cardiovasc Med. 2024. PMID: 39502194 Free PMC article. Review. - Elucidating the complex interplay between chronic kidney disease and hypertension.
Nagata D, Hishida E. Nagata D, et al. Hypertens Res. 2024 Dec;47(12):3409-3422. doi: 10.1038/s41440-024-01937-8. Epub 2024 Oct 16. Hypertens Res. 2024. PMID: 39415028 Review. - Immune mechanisms in the pathophysiology of hypertension.
Nguyen BA, Alexander MR, Harrison DG. Nguyen BA, et al. Nat Rev Nephrol. 2024 Aug;20(8):530-540. doi: 10.1038/s41581-024-00838-w. Epub 2024 Apr 24. Nat Rev Nephrol. 2024. PMID: 38658669 Review. - Mechanisms of inflammation modulation by different immune cells in hypertensive nephropathy.
Hao XM, Liu Y, Hailaiti D, Gong Y, Zhang XD, Yue BN, Liu JP, Wu XL, Yang KZ, Wang J, Liu QG. Hao XM, et al. Front Immunol. 2024 Mar 13;15:1333170. doi: 10.3389/fimmu.2024.1333170. eCollection 2024. Front Immunol. 2024. PMID: 38545112 Free PMC article. Review. - Dendritic cell epithelial sodium channel induced inflammation and salt-sensitive hypertension.
Demirci M, Hinton A, Kirabo A. Demirci M, et al. Curr Opin Nephrol Hypertens. 2024 Mar 1;33(2):145-153. doi: 10.1097/MNH.0000000000000963. Epub 2024 Jan 5. Curr Opin Nephrol Hypertens. 2024. PMID: 38180118 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous