Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains - PubMed (original) (raw)
. 2013 Jan;41(Database issue):D499-507.
doi: 10.1093/nar/gks1266. Epub 2012 Nov 30.
Ian Sillitoe, Antonina Andreeva, Tom L Blundell, Daniel W A Buchan, Cyrus Chothia, Alison Cuff, Jose M Dana, Ioannis Filippis, Julian Gough, Sarah Hunter, David T Jones, Lawrence A Kelley, Gerard J Kleywegt, Federico Minneci, Alex Mitchell, Alexey G Murzin, Bernardo Ochoa-Montaño, Owen J L Rackham, James Smith, Michael J E Sternberg, Sameer Velankar, Corin Yeats, Christine Orengo
Affiliations
- PMID: 23203986
- PMCID: PMC3531217
- DOI: 10.1093/nar/gks1266
Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains
Tony E Lewis et al. Nucleic Acids Res. 2013 Jan.
Abstract
Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).
Figures
Figure 1.
The Genome3D annotations page for the sequence with UniProt accession B4DXN4.
Figure 2.
Details illustrating specific parts of the functionality of the Genome3D annotation page shown in Figure 1.
Figure 3.
Viewing the Gold Standard consensus pairs on the CATH/SCOP Superfamily Pairs page while searching for ‘kinase’ to restrict the display to superfamilies with that word in their name.
Similar articles
- The Genome3D Consortium for Structural Annotations of Selected Model Organisms.
Waman VP, Blundell TL, Buchan DWA, Gough J, Jones D, Kelley L, Murzin A, Pandurangan AP, Sillitoe I, Sternberg M, Torres P, Orengo C. Waman VP, et al. Methods Mol Biol. 2020;2165:27-67. doi: 10.1007/978-1-0716-0708-4_3. Methods Mol Biol. 2020. PMID: 32621218 - Genome3D: exploiting structure to help users understand their sequences.
Lewis TE, Sillitoe I, Andreeva A, Blundell TL, Buchan DW, Chothia C, Cozzetto D, Dana JM, Filippis I, Gough J, Jones DT, Kelley LA, Kleywegt GJ, Minneci F, Mistry J, Murzin AG, Ochoa-Montaño B, Oates ME, Punta M, Rackham OJ, Stahlhacke J, Sternberg MJ, Velankar S, Orengo C. Lewis TE, et al. Nucleic Acids Res. 2015 Jan;43(Database issue):D382-6. doi: 10.1093/nar/gku973. Epub 2014 Oct 27. Nucleic Acids Res. 2015. PMID: 25348407 Free PMC article. - The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis.
Pearl F, Todd A, Sillitoe I, Dibley M, Redfern O, Lewis T, Bennett C, Marsden R, Grant A, Lee D, Akpor A, Maibaum M, Harrison A, Dallman T, Reeves G, Diboun I, Addou S, Lise S, Johnston C, Sillero A, Thornton J, Orengo C. Pearl F, et al. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D247-51. doi: 10.1093/nar/gki024. Nucleic Acids Res. 2005. PMID: 15608188 Free PMC article. - Protein function annotation using protein domain family resources.
Das S, Orengo CA. Das S, et al. Methods. 2016 Jan 15;93:24-34. doi: 10.1016/j.ymeth.2015.09.029. Epub 2015 Oct 3. Methods. 2016. PMID: 26434392 Review. - The history of the CATH structural classification of protein domains.
Sillitoe I, Dawson N, Thornton J, Orengo C. Sillitoe I, et al. Biochimie. 2015 Dec;119:209-17. doi: 10.1016/j.biochi.2015.08.004. Epub 2015 Aug 4. Biochimie. 2015. PMID: 26253692 Free PMC article. Review.
Cited by
- Assignment of structural domains in proteins using diffusion kernels on graphs.
Taheri-Ledari M, Zandieh A, Shariatpanahi SP, Eslahchi C. Taheri-Ledari M, et al. BMC Bioinformatics. 2022 Sep 8;23(1):369. doi: 10.1186/s12859-022-04902-9. BMC Bioinformatics. 2022. PMID: 36076174 Free PMC article. - Ligand-based virtual screening, molecular docking, and molecular dynamics of eugenol analogs as potential acetylcholinesterase inhibitors with biological activity against Spodoptera frugiperda.
Méndez-Álvarez D, Herrera-Mayorga V, Juárez-Saldivar A, Paz-González AD, Ortiz-Pérez E, Bandyopadhyay D, Pérez-Sánchez H, Rivera G. Méndez-Álvarez D, et al. Mol Divers. 2022 Aug;26(4):2025-2037. doi: 10.1007/s11030-021-10312-5. Epub 2021 Sep 16. Mol Divers. 2022. PMID: 34529209 - ProtCHOIR: a tool for proteome-scale generation of homo-oligomers.
Torres PHM, Rossi AD, Blundell TL. Torres PHM, et al. Brief Bioinform. 2021 Nov 5;22(6):bbab182. doi: 10.1093/bib/bbab182. Brief Bioinform. 2021. PMID: 34015821 Free PMC article. - Protein domain identification methods and online resources.
Wang Y, Zhang H, Zhong H, Xue Z. Wang Y, et al. Comput Struct Biotechnol J. 2021 Feb 2;19:1145-1153. doi: 10.1016/j.csbj.2021.01.041. eCollection 2021. Comput Struct Biotechnol J. 2021. PMID: 33680357 Free PMC article. Review. - Molecular replacement using structure predictions from databases.
Simpkin AJ, Thomas JMH, Simkovic F, Keegan RM, Rigden DJ. Simpkin AJ, et al. Acta Crystallogr D Struct Biol. 2019 Dec 1;75(Pt 12):1051-1062. doi: 10.1107/S2059798319013962. Epub 2019 Nov 19. Acta Crystallogr D Struct Biol. 2019. PMID: 31793899 Free PMC article.
References
- Taylor WR, Orengo CA. Protein structure alignment. J. Mol. Biol. 1989;208:1–22. - PubMed
- Reid AJ, Yeats C, Orengo CA. Methods of remote homology detection can be combined to increase coverage by 10% in the midnight zone. Bioinformatics. 2007;23:2353–2360. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials