A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network - PubMed (original) (raw)

. 2012 Dec 7;11(6):769-82.

doi: 10.1016/j.stem.2012.11.008.

Affiliations

Free article

A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network

Azadeh Golipour et al. Cell Stem Cell. 2012.

Free article

Abstract

Reprogramming of somatic cells to a pluripotent state via expression of Oct4, Klf4, Myc, and Sox2 is a multistep process involving phased changes in gene expression. Here, we focus on the later stages of reprogramming, termed maturation and stabilization. We show that the stabilization phase and the acquisition of pluripotency are dependent on the removal of transgene expression late in the maturation phase. Clonal analysis of cells undergoing reprogramming revealed subsets of stabilization-competent (SC) and stabilization-incompetent (SI) cells. SC clones acquire a competency gene-expression signature late in the maturation phase. Functional analysis of SC signature genes identified enhancers of the transition to the stabilization phase and a distinct subset of genes required for the maintenance of pluripotency. Thus, the acquisition and maintenance of pluripotency are regulated by distinct molecular networks, and a specific regulatory program not previously implicated in reprogramming is required for the transition to transgene independence.

Copyright © 2012 Elsevier Inc. All rights reserved.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources