DNA-binding specificities of human transcription factors - PubMed (original) (raw)
. 2013 Jan 17;152(1-2):327-39.
doi: 10.1016/j.cell.2012.12.009.
Jian Yan, Thomas Whitington, Jarkko Toivonen, Kazuhiro R Nitta, Pasi Rastas, Ekaterina Morgunova, Martin Enge, Mikko Taipale, Gonghong Wei, Kimmo Palin, Juan M Vaquerizas, Renaud Vincentelli, Nicholas M Luscombe, Timothy R Hughes, Patrick Lemaire, Esko Ukkonen, Teemu Kivioja, Jussi Taipale
Affiliations
- PMID: 23332764
- DOI: 10.1016/j.cell.2012.12.009
Free article
DNA-binding specificities of human transcription factors
Arttu Jolma et al. Cell. 2013.
Free article
Abstract
Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.
Copyright © 2013 Elsevier Inc. All rights reserved.
Similar articles
- Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
Zamanighomi M, Lin Z, Wang Y, Jiang R, Wong WH. Zamanighomi M, et al. Nucleic Acids Res. 2017 Jun 2;45(10):5666-5677. doi: 10.1093/nar/gkx358. Nucleic Acids Res. 2017. PMID: 28472398 Free PMC article. - Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities.
Jolma A, Kivioja T, Toivonen J, Cheng L, Wei G, Enge M, Taipale M, Vaquerizas JM, Yan J, Sillanpää MJ, Bonke M, Palin K, Talukder S, Hughes TR, Luscombe NM, Ukkonen E, Taipale J. Jolma A, et al. Genome Res. 2010 Jun;20(6):861-73. doi: 10.1101/gr.100552.109. Epub 2010 Apr 8. Genome Res. 2010. PMID: 20378718 Free PMC article. - High-Throughput Protein Production Combined with High- Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities.
Nitta KR, Vincentelli R, Jacox E, Cimino A, Ohtsuka Y, Sobral D, Satou Y, Cambillau C, Lemaire P. Nitta KR, et al. Methods Mol Biol. 2019;2025:487-517. doi: 10.1007/978-1-4939-9624-7_23. Methods Mol Biol. 2019. PMID: 31267468 - [DNA-binding profiles of mammalian transcription factors].
Gu GM, Wang JK. Gu GM, et al. Yi Chuan. 2012 Aug;34(8):950-68. doi: 10.3724/sp.j.1005.2012.00950. Yi Chuan. 2012. PMID: 22917900 Review. Chinese. - In vitro DNA-binding profile of transcription factors: methods and new insights.
Wang J, Lu J, Gu G, Liu Y. Wang J, et al. J Endocrinol. 2011 Jul;210(1):15-27. doi: 10.1530/JOE-11-0010. Epub 2011 Mar 9. J Endocrinol. 2011. PMID: 21389103 Review.
Cited by
- Molecular cloning of PRD-like homeobox genes expressed in bovine oocytes and early IVF embryos.
Yaşar B, Boskovic N, Ivask M, Weltner J, Jouhilahti EM, Vill P, Skoog T, Jaakma Ü, Kere J, Bürglin TR, Katayama S, Org T, Kurg A. Yaşar B, et al. BMC Genomics. 2024 Nov 6;25(1):1048. doi: 10.1186/s12864-024-10969-w. BMC Genomics. 2024. PMID: 39506635 - Benchmarking and building DNA binding affinity models using allele-specific and allele-agnostic transcription factor binding data.
Li X, Melo LAN, Bussemaker HJ. Li X, et al. Genome Biol. 2024 Oct 31;25(1):284. doi: 10.1186/s13059-024-03424-2. Genome Biol. 2024. PMID: 39482734 Free PMC article. - p53motifDB: integration of genomic information and tumor suppressor p53 binding motifs.
Baniulyte G, Hicks SM, Sammons MA. Baniulyte G, et al. bioRxiv [Preprint]. 2024 Sep 25:2024.09.24.614594. doi: 10.1101/2024.09.24.614594. bioRxiv. 2024. PMID: 39386591 Free PMC article. Preprint. - A Spatiotemporal Transcriptome Reveals Stalk Development in Pearl Millet.
Mao F, Luo L, Ma N, Qu Q, Chen H, Yi C, Cao M, Shao E, Lin H, Lin Z, Zhu F, Lu G, Lin D. Mao F, et al. Int J Mol Sci. 2024 Sep 10;25(18):9798. doi: 10.3390/ijms25189798. Int J Mol Sci. 2024. PMID: 39337286 Free PMC article. - Evolutionary Innovations in Conserved Regulatory Elements Associate With Developmental Genes in Mammals.
Uebbing S, Kocher AA, Baumgartner M, Ji Y, Bai S, Xing X, Nottoli T, Noonan JP. Uebbing S, et al. Mol Biol Evol. 2024 Oct 4;41(10):msae199. doi: 10.1093/molbev/msae199. Mol Biol Evol. 2024. PMID: 39302728 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous