A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins - PubMed (original) (raw)
doi: 10.1038/nchem.1546. Epub 2013 Jan 6.
Keitaro Umezawa, Nicolas Olivier, Alf Honigmann, Guoying Yang, Tilman Plass, Veronika Mueller, Luc Reymond, Ivan R Corrêa Jr, Zhen-Ge Luo, Carsten Schultz, Edward A Lemke, Paul Heppenstall, Christian Eggeling, Suliana Manley, Kai Johnsson
Affiliations
- PMID: 23344448
- DOI: 10.1038/nchem.1546
Free article
A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins
Gražvydas Lukinavičius et al. Nat Chem. 2013 Feb.
Free article
Abstract
The ideal fluorescent probe for bioimaging is bright, absorbs at long wavelengths and can be implemented flexibly in living cells and in vivo. However, the design of synthetic fluorophores that combine all of these properties has proved to be extremely difficult. Here, we introduce a biocompatible near-infrared silicon-rhodamine probe that can be coupled specifically to proteins using different labelling techniques. Importantly, its high permeability and fluorogenic character permit the imaging of proteins in living cells and tissues, and its brightness and photostability make it ideally suited for live-cell super-resolution microscopy. The excellent spectroscopic properties of the probe combined with its ease of use in live-cell applications make it a powerful new tool for bioimaging.
Comment in
- Fluorescent imaging: Shining a light into live cells.
Lang K, Chin JW. Lang K, et al. Nat Chem. 2013 Feb;5(2):81-2. doi: 10.1038/nchem.1555. Nat Chem. 2013. PMID: 23344440 No abstract available. - Led to the near infrared.
Doerr A. Doerr A. Nat Methods. 2013 Mar;10(3):196. doi: 10.1038/nmeth.2394. Nat Methods. 2013. PMID: 23570044 No abstract available.
Similar articles
- Rational Development of Near-Infrared Fluorophores with Large Stokes Shifts, Bright One-Photon, and Two-Photon Emissions for Bioimaging and Biosensing Applications.
Zhou L, Wang Q, Tan Y, Lang MJ, Sun H, Liu X. Zhou L, et al. Chemistry. 2017 Jun 27;23(36):8736-8740. doi: 10.1002/chem.201701365. Epub 2017 Jun 7. Chemistry. 2017. PMID: 28481024 - De Novo Designed Self-Assembling Rhodamine Probe for Real-Time, Long-Term and Quantitative Live-Cell Nanoscopy.
Zhang J, Shi H, Huang C, Mei L, Guo Q, Cheng K, Wu P, Su D, Chen Q, Gan S, Wing Chan CK, Shi J, Chen JL, Jonathan Choi CH, Yao SQ, Chen XK, Tang BZ, He J, Sun H. Zhang J, et al. ACS Nano. 2023 Feb 28;17(4):3632-3644. doi: 10.1021/acsnano.2c10467. Epub 2023 Feb 6. ACS Nano. 2023. PMID: 36744992 - Fluorescent imaging: Shining a light into live cells.
Lang K, Chin JW. Lang K, et al. Nat Chem. 2013 Feb;5(2):81-2. doi: 10.1038/nchem.1555. Nat Chem. 2013. PMID: 23344440 No abstract available. - Fluorogenic and Cell-Permeable Rhodamine Dyes for High-Contrast Live-Cell Protein Labeling in Bioimaging and Biosensing.
Si D, Li Q, Bao Y, Zhang J, Wang L. Si D, et al. Angew Chem Int Ed Engl. 2023 Nov 6;62(45):e202307641. doi: 10.1002/anie.202307641. Epub 2023 Jul 31. Angew Chem Int Ed Engl. 2023. PMID: 37483077 Review. - Multifunctional materials conjugated with near-infrared fluorescent organic molecules and their targeted cancer bioimaging potentialities.
Asgher M, Qamar SA, Sadaf M, Iqbal HMN. Asgher M, et al. Biomed Phys Eng Express. 2020 Jan 30;6(1):012003. doi: 10.1088/2057-1976/ab6e1d. Biomed Phys Eng Express. 2020. PMID: 33438589 Review.
Cited by
- Gentle Rhodamines for Live-Cell Fluorescence Microscopy.
Liu T, Kompa J, Ling J, Lardon N, Zhang Y, Chen J, Reymond L, Chen P, Tran M, Yang Z, Zhang H, Liu Y, Pitsch S, Zou P, Wang L, Johnsson K, Chen Z. Liu T, et al. ACS Cent Sci. 2024 Oct 2;10(10):1933-1944. doi: 10.1021/acscentsci.4c00616. eCollection 2024 Oct 23. ACS Cent Sci. 2024. PMID: 39463828 Free PMC article. - Multiplexed no-wash cellular imaging using BenzoTag, an evolved self-labeling protein.
Lampkin BJ, Goldberg BJ, Kritzer JA. Lampkin BJ, et al. Chem Sci. 2024 Oct 9;15(42):17337-47. doi: 10.1039/d4sc05090h. Online ahead of print. Chem Sci. 2024. PMID: 39430930 Free PMC article. - Prodrug activation by 4,4'-bipyridine-mediated aromatic nitro reduction.
Wang Q, Song Y, Yuan S, Zhu Y, Wang W, Chu L. Wang Q, et al. Nat Commun. 2024 Oct 5;15(1):8643. doi: 10.1038/s41467-024-52604-y. Nat Commun. 2024. PMID: 39368987 Free PMC article. - Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Dunkelmann DL, Chin JW. Dunkelmann DL, et al. Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5. Chem Rev. 2024. PMID: 39235427 Free PMC article. Review. - Chemigenetic Far-Red Labels and Ca2+ Indicators Optimized for Photoacoustic Imaging.
Cook A, Kaydanov N, Ugarte-Uribe B, Boffi JC, Kamm GB, Prevedel R, Deo C. Cook A, et al. J Am Chem Soc. 2024 Aug 28;146(34):23963-23971. doi: 10.1021/jacs.4c07080. Epub 2024 Aug 19. J Am Chem Soc. 2024. PMID: 39158696 Free PMC article.
References
- Dev Biol. 2001 Dec 1;240(1):237-46 - PubMed
- Angew Chem Int Ed Engl. 2012 Apr 23;51(17):4166-70 - PubMed
- Nat Rev Mol Cell Biol. 2011 Jun;12(6):342 - PubMed
- Chem Biol. 2008 Feb;15(2):128-36 - PubMed
- Nat Biotechnol. 2003 Jan;21(1):86-9 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources