Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: its significance to sugar nucleotidyl transferases - PubMed (original) (raw)
. 2013 May 27;425(10):1745-59.
doi: 10.1016/j.jmb.2013.02.019. Epub 2013 Feb 26.
Affiliations
- PMID: 23485416
- DOI: 10.1016/j.jmb.2013.02.019
Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: its significance to sugar nucleotidyl transferases
Pravin Kumar Ankush Jagtap et al. J Mol Biol. 2013.
Abstract
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU), exclusive to prokaryotes, is a bifunctional enzyme that synthesizes UDP-GlcNAc-an important component of the cell wall of many microorganisms. Uridyltransfer, one of the reactions it catalyzes, involves binding GlcNAc-1-P, UTP and Mg(2+) ions; however, whether one or two ions catalyze this reaction remains ambiguous. Here, we resolve this using biochemical and crystallographic studies on GlmU from Mycobacterium tuberculosis (GlmU(Mtb)) and identify a two-metal-ion mechanism (mechanism-B). In contrast to well-established two-metal mechanism (mechanism-A) for enzymes acting on nucleic acids, mechanism-B is distinct in the way the two Mg(2+) ions (Mg(2+)A and Mg(2+)B) are positioned and stabilized. Further, attempts to delineate the roles of the metal ions in substrate stabilization, nucleophile activation and transition-state stabilization are presented. Interestingly, a detailed analysis of the available structures of sugar nucleotidyl transferases (SNTs) suggests that they too would utilize mechanism-B rather than mechanism-A. Based on this, SNTs could be classified into Group-I, which employs the two-metal mechanism-B as in GlmU, and Group-II that employs a variant one-metal mechanism-B, wherein the role of Mg(2+)A is substituted by a conserved lysine. Strikingly, eukaryotic SNTs appear confined to Group-II. Recognizing these differences may be important in the design of selective inhibitors against microbial nucleotidyl transferases.
Copyright © 2013 Elsevier Ltd. All rights reserved.
Similar articles
- GlmU (N-acetylglucosamine-1-phosphate uridyltransferase) bound to three magnesium ions and ATP at the active site.
Vithani N, Bais V, Prakash B. Vithani N, et al. Acta Crystallogr F Struct Biol Commun. 2014 Jun;70(Pt 6):703-8. doi: 10.1107/S2053230X14008279. Epub 2014 May 10. Acta Crystallogr F Struct Biol Commun. 2014. PMID: 24915076 Free PMC article. - Expression, essentiality, and a microtiter plate assay for mycobacterial GlmU, the bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase.
Zhang W, Jones VC, Scherman MS, Mahapatra S, Crick D, Bhamidi S, Xin Y, McNeil MR, Ma Y. Zhang W, et al. Int J Biochem Cell Biol. 2008;40(11):2560-71. doi: 10.1016/j.biocel.2008.05.003. Epub 2008 May 15. Int J Biochem Cell Biol. 2008. PMID: 18573680 Free PMC article. - Substrate-bound crystal structures reveal features unique to Mycobacterium tuberculosis N-acetyl-glucosamine 1-phosphate uridyltransferase and a catalytic mechanism for acetyl transfer.
Jagtap PK, Soni V, Vithani N, Jhingan GD, Bais VS, Nandicoori VK, Prakash B. Jagtap PK, et al. J Biol Chem. 2012 Nov 16;287(47):39524-37. doi: 10.1074/jbc.M112.390765. Epub 2012 Sep 11. J Biol Chem. 2012. PMID: 22969087 Free PMC article. - UDP-GlcNAc pathway: Potential target for inhibitor discovery against M. tuberculosis.
Rani C, Khan IA. Rani C, et al. Eur J Pharm Sci. 2016 Feb 15;83:62-70. doi: 10.1016/j.ejps.2015.12.013. Epub 2015 Dec 10. Eur J Pharm Sci. 2016. PMID: 26690048 Review. - Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases.
Price NP, Momany FA. Price NP, et al. Glycobiology. 2005 Sep;15(9):29R-42R. doi: 10.1093/glycob/cwi065. Epub 2005 Apr 20. Glycobiology. 2005. PMID: 15843595 Review.
Cited by
- Crystal Structure of the N-Acetylmuramic Acid α-1-Phosphate (MurNAc-α1-P) Uridylyltransferase MurU, a Minimal Sugar Nucleotidyltransferase and Potential Drug Target Enzyme in Gram-negative Pathogens.
Renner-Schneck M, Hinderberger I, Gisin J, Exner T, Mayer C, Stehle T. Renner-Schneck M, et al. J Biol Chem. 2015 Apr 24;290(17):10804-13. doi: 10.1074/jbc.M114.620989. Epub 2015 Mar 12. J Biol Chem. 2015. PMID: 25767118 Free PMC article. - Identification of Mtb GlmU Uridyltransferase Domain Inhibitors by Ligand-Based and Structure-Based Drug Design Approaches.
Singh M, Kempanna P, Bharatham K. Singh M, et al. Molecules. 2022 Apr 28;27(9):2805. doi: 10.3390/molecules27092805. Molecules. 2022. PMID: 35566155 Free PMC article. - A mechanism-inspired UDP-_N_-acetylglucosamine pyrophosphorylase inhibitor.
Raimi OG, Hurtado-Guerrero R, Borodkin V, Ferenbach A, Urbaniak MD, Ferguson MAJ, van Aalten DMF. Raimi OG, et al. RSC Chem Biol. 2020 Mar 24;1(1):13-25. doi: 10.1039/c9cb00017h. eCollection 2020 Apr 16. RSC Chem Biol. 2020. PMID: 34458745 Free PMC article. - The Mycobacterial Cell Wall--Peptidoglycan and Arabinogalactan.
Alderwick LJ, Harrison J, Lloyd GS, Birch HL. Alderwick LJ, et al. Cold Spring Harb Perspect Med. 2015 Mar 27;5(8):a021113. doi: 10.1101/cshperspect.a021113. Cold Spring Harb Perspect Med. 2015. PMID: 25818664 Free PMC article. Review. - Mechanism of Nucleotidyltransfer Reaction and Role of Mg2+ Ion in Sugar Nucleotidyltransferases.
Vithani N, Prakash B, Nair NN. Vithani N, et al. Biophys J. 2020 Aug 4;119(3):619-627. doi: 10.1016/j.bpj.2020.06.017. Epub 2020 Jun 24. Biophys J. 2020. PMID: 32645293 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases