CRISPR-Cas systems and RNA-guided interference - PubMed (original) (raw)
Review
. 2013 May-Jun;4(3):267-78.
doi: 10.1002/wrna.1159. Epub 2013 Mar 20.
Affiliations
- PMID: 23520078
- DOI: 10.1002/wrna.1159
Review
CRISPR-Cas systems and RNA-guided interference
Rodolphe Barrangou. Wiley Interdiscip Rev RNA. 2013 May-Jun.
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) together with associated sequences (cas) form the CRISPR-Cas system, which provides adaptive immunity against viruses and plasmids in bacteria and archaea. Immunity is built through acquisition of short stretches of invasive nucleic acids into CRISPR loci as 'spacers'. These immune markers are transcribed and processed into small noncoding interfering CRISPR RNAs (crRNAs) that guide Cas proteins toward target nucleic acids for specific cleavage of homologous sequences. Mechanistically, CRISPR-Cas systems function in three distinct stages, namely: (1) adaptation, where new spacers are acquired from invasive elements for immunization; (2) crRNA biogenesis, where CRISPR loci are transcribed and processed into small interfering crRNAs; and (3) interference, where crRNAs guide the Cas machinery to specifically cleave homologous invasive nucleic acids. A number of studies have shown that CRISPR-mediated immunity can readily increase the breadth and depth of virus resistance in bacteria and archaea. CRISPR interference can also target plasmid sequences and provide a barrier against the uptake of undesirable mobile genetic elements. These inheritable hypervariable loci provide phylogenetic information that can be insightful for typing purposes, epidemiological studies, and ecological surveys of natural habitats and environmental samples. More recently, the ability to reprogram CRISPR-directed endonuclease activity using customizable small noncoding interfering RNAs has set the stage for novel genome editing and engineering avenues. This review highlights recent studies that revealed the molecular basis of CRISPR-mediated immunity, and discusses applications of crRNA-guided interference.
Copyright © 2013 John Wiley & Sons, Ltd.
Similar articles
- CRISPR/Cas, the immune system of bacteria and archaea.
Horvath P, Barrangou R. Horvath P, et al. Science. 2010 Jan 8;327(5962):167-70. doi: 10.1126/science.1179555. Science. 2010. PMID: 20056882 Review. - Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.
Al-Attar S, Westra ER, van der Oost J, Brouns SJ. Al-Attar S, et al. Biol Chem. 2011 Apr;392(4):277-89. doi: 10.1515/BC.2011.042. Epub 2011 Feb 7. Biol Chem. 2011. PMID: 21294681 Review. - Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information.
Fineran PC, Charpentier E. Fineran PC, et al. Virology. 2012 Dec 20;434(2):202-9. doi: 10.1016/j.virol.2012.10.003. Epub 2012 Nov 2. Virology. 2012. PMID: 23123013 Review. - Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I-F systems.
Almendros C, Guzmán NM, García-Martínez J, Mojica FJ. Almendros C, et al. Nat Microbiol. 2016 Jun 6;1(8):16081. doi: 10.1038/nmicrobiol.2016.81. Nat Microbiol. 2016. PMID: 27573106 - Viral diversity threshold for adaptive immunity in prokaryotes.
Weinberger AD, Wolf YI, Lobkovsky AE, Gilmore MS, Koonin EV. Weinberger AD, et al. mBio. 2012 Dec 4;3(6):e00456-12. doi: 10.1128/mBio.00456-12. mBio. 2012. PMID: 23221803 Free PMC article.
Cited by
- Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus.
Wei Y, Chesne MT, Terns RM, Terns MP. Wei Y, et al. Nucleic Acids Res. 2015 Feb 18;43(3):1749-58. doi: 10.1093/nar/gku1407. Nucleic Acids Res. 2015. PMID: 25589547 Free PMC article. - A genomic sequence of the type II-A clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system in Mycoplasma salivarium strain ATCC 29803.
Mizuki H, Shimoyama Y, Ishikawa T, Sasaki M. Mizuki H, et al. J Oral Microbiol. 2022 Jan 2;14(1):2008153. doi: 10.1080/20002297.2021.2008153. eCollection 2022. J Oral Microbiol. 2022. PMID: 34992734 Free PMC article. - Association of clustered regularly interspaced short palindromic repeat (CRISPR) elements with specific serotypes and virulence potential of shiga toxin-producing Escherichia coli.
Toro M, Cao G, Ju W, Allard M, Barrangou R, Zhao S, Brown E, Meng J. Toro M, et al. Appl Environ Microbiol. 2014 Feb;80(4):1411-20. doi: 10.1128/AEM.03018-13. Epub 2013 Dec 13. Appl Environ Microbiol. 2014. PMID: 24334663 Free PMC article. - Repurposing the atypical type I-G CRISPR system for bacterial genome engineering.
Shangguan Q, White MF. Shangguan Q, et al. Microbiology (Reading). 2023 Aug;169(8):001373. doi: 10.1099/mic.0.001373. Microbiology (Reading). 2023. PMID: 37526970 Free PMC article. - Targeted genome modification technologies and their applications in crop improvements.
Chen K, Gao C. Chen K, et al. Plant Cell Rep. 2014 Apr;33(4):575-83. doi: 10.1007/s00299-013-1539-6. Epub 2013 Nov 24. Plant Cell Rep. 2014. PMID: 24277082 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources