Upper gastrointestinal microbiota and digestive diseases - PubMed (original) (raw)

Review

Upper gastrointestinal microbiota and digestive diseases

Zi-Kai Wang et al. World J Gastroenterol. 2013.

Abstract

Metagenomics which combines the power of genomics, bioinformatics, and systems biology, provide new access to the microbial world. Metagenomics permit the genetic analysis of complex microbial populations without requiring prior cultivation. Through the conceptual innovations in metagenomics and the improvements in DNA high-throughput sequencing and bioinformatics analysis technology, gastrointestinal microbiology has entered the metagenomics era and become a hot topic worldwide. Human microbiome research is underway, however, most studies in this area have focused on the composition and function of the intestinal microbiota and the relationship between intestinal microbiota and metabolic diseases (obesity, diabetes, metabolic syndrome, etc.) and intestinal disorders [inflammatory bowel disease, colorectal cancer, irritable bowel syndrome (IBS), etc.]. Few investigations on microbiota have been conducted within the upper gastrointestinal tract (esophagus, stomach and duodenum). The upper gastrointestinal microbiota is essential for several gastrointestinal illnesses, including esophagitis, Barrett's esophagus, and esophageal carcinoma, gastritis and gastric cancer, small intestinal bacterial overgrowth, IBS and celiac disease. However, the constitution and diversity of the microbiota in different sections of the upper gastrointestinal tract under health and various disease states, as well as the function of microbiota in the pathogenesis of various digestive diseases are still undefined. The current article provides an overview of the recent findings regarding the relationship between upper gastrointestinal microbiota and gastrointestinal diseases; and discusses the study limitations and future directions of upper gastrointestinal microbiota research.

Keywords: 16S rDNA; Digestive diseases; Metagenomics; Microbiota; Upper gastrointestinal tract.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. - PMC - PubMed
    1. Lederberg J. Infectious history. Science. 2000;288:287–293. - PubMed
    1. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920. - PubMed
    1. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9:577–589. - PubMed
    1. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332:974–977. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources