Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p - PubMed (original) (raw)
. 2013 Jun 12;425(11):1852-1868.
doi: 10.1016/j.jmb.2013.02.035. Epub 2013 Mar 28.
Affiliations
- PMID: 23541588
- DOI: 10.1016/j.jmb.2013.02.035
Free article
Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p
Junya Kobayashi et al. J Mol Biol. 2013.
Free article
Abstract
Kap121p (also known as Pse1p) is an essential karyopherin that mediates nuclear import of a plethora of cargoes including cell cycle regulators, transcription factors, and ribosomal proteins in Saccharomyces cerevisiae. It has been proposed that the spindle assembly checkpoint signaling triggers molecular rearrangements of nuclear pore complexes and thereby arrests Kap121p-mediated nuclear import at metaphase, while leaving import mediated by other karyopherins unaffected. The Kap121p-specific import inhibition is required for normal progression through mitosis. To understand the structural basis for Kap121p-mediated nuclear import and its unique regulatory mechanism during mitosis, we determined crystal structures of Kap121p in isolation and also in complex with either its import cargoes or nucleoporin Nup53p or RanGTP. Kap121p has a superhelical structure composed of 24 HEAT repeats. The structures of Kap121p-cargo complexes define a non-conventional nuclear localization signal (NLS) that has a consensus sequence of KV/IxKx1-2K/H/R. The structure of Kap121p-Nup53p complex shows that cargo and Nup53p compete for the same high-affinity binding site, explaining how Nup53p binding forces cargo release when the Kap121p-binding site of Nup53p is exposed during mitosis. Comparison of the NLS and RanGTP complexes reveals that RanGTP binding not only occludes the cargo-binding site but also forces Kap121p into a conformation that is incompatible with NLS recognition.
Copyright © 2013 Elsevier Ltd. All rights reserved.
Comment in
- Cargo recognition explains nuclear transport regulation induced by nuclear pore complex reorganization.
Imamoto N. Imamoto N. J Mol Biol. 2013 Jun 12;425(11):1849-1851. doi: 10.1016/j.jmb.2013.03.037. Epub 2013 Mar 28. J Mol Biol. 2013. PMID: 23542339 No abstract available.
Similar articles
- Karyopherins in nuclear pore biogenesis: a role for Kap121p in the assembly of Nup53p into nuclear pore complexes.
Lusk CP, Makhnevych T, Marelli M, Aitchison JD, Wozniak RW. Lusk CP, et al. J Cell Biol. 2002 Oct 28;159(2):267-78. doi: 10.1083/jcb.200203079. Epub 2002 Oct 28. J Cell Biol. 2002. PMID: 12403813 Free PMC article. - Crystal structure of the karyopherin Kap121p bound to the extreme C-terminus of the protein phosphatase Cdc14p.
Kobayashi J, Hirano H, Matsuura Y. Kobayashi J, et al. Biochem Biophys Res Commun. 2015 Jul 31;463(3):309-14. doi: 10.1016/j.bbrc.2015.05.060. Epub 2015 May 28. Biochem Biophys Res Commun. 2015. PMID: 26022122 - Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p.
Marelli M, Aitchison JD, Wozniak RW. Marelli M, et al. J Cell Biol. 1998 Dec 28;143(7):1813-30. doi: 10.1083/jcb.143.7.1813. J Cell Biol. 1998. PMID: 9864357 Free PMC article. - Structural biology of nucleocytoplasmic transport.
Cook A, Bono F, Jinek M, Conti E. Cook A, et al. Annu Rev Biochem. 2007;76:647-71. doi: 10.1146/annurev.biochem.76.052705.161529. Annu Rev Biochem. 2007. PMID: 17506639 Review. - Nuclear import of histones.
Bernardes NE, Chook YM. Bernardes NE, et al. Biochem Soc Trans. 2020 Dec 18;48(6):2753-2767. doi: 10.1042/BST20200572. Biochem Soc Trans. 2020. PMID: 33300986 Free PMC article. Review.
Cited by
- Structural characterization of recombinant IAV polymerase reveals a stable complex between viral PA-PB1 heterodimer and host RanBP5.
Swale C, Monod A, Tengo L, Labaronne A, Garzoni F, Bourhis JM, Cusack S, Schoehn G, Berger I, Ruigrok RW, Crépin T. Swale C, et al. Sci Rep. 2016 Apr 20;6:24727. doi: 10.1038/srep24727. Sci Rep. 2016. PMID: 27095520 Free PMC article. - Dissecting the Nuclear Import of the Ribosomal Protein Rps2 (uS5).
Steiner A, Favre S, Mack M, Hausharter A, Pillet B, Hafner J, Mitterer V, Kressler D, Pertschy B, Zierler I. Steiner A, et al. Biomolecules. 2023 Jul 14;13(7):1127. doi: 10.3390/biom13071127. Biomolecules. 2023. PMID: 37509163 Free PMC article. - Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites.
Yoshizawa T, Ali R, Jiou J, Fung HYJ, Burke KA, Kim SJ, Lin Y, Peeples WB, Saltzberg D, Soniat M, Baumhardt JM, Oldenbourg R, Sali A, Fawzi NL, Rosen MK, Chook YM. Yoshizawa T, et al. Cell. 2018 Apr 19;173(3):693-705.e22. doi: 10.1016/j.cell.2018.03.003. Cell. 2018. PMID: 29677513 Free PMC article. - Karyopherins in cancer.
Çağatay T, Chook YM. Çağatay T, et al. Curr Opin Cell Biol. 2018 Jun;52:30-42. doi: 10.1016/j.ceb.2018.01.006. Epub 2018 Feb 4. Curr Opin Cell Biol. 2018. PMID: 29414591 Free PMC article. Review. - A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly.
Schütz S, Fischer U, Altvater M, Nerurkar P, Peña C, Gerber M, Chang Y, Caesar S, Schubert OT, Schlenstedt G, Panse VG. Schütz S, et al. Elife. 2014 Aug 21;3:e03473. doi: 10.7554/eLife.03473. Elife. 2014. PMID: 25144938 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases