Antioxidant and antibacterial activities of crude extracts and essential oils of Syzygium cumini leaves - PubMed (original) (raw)

Antioxidant and antibacterial activities of crude extracts and essential oils of Syzygium cumini leaves

Amal A Mohamed et al. PLoS One. 2013.

Abstract

This research highlights the chemical composition, antioxidant and antibacterial activities of essential oils and various crude extracts (using methanol and methylene chloride) from Syzygium cumini leaves. Essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS).The abundant constituents of the oils were: α-pinene (32.32%), β-pinene (12.44%), trans-caryophyllene (11.19%), 1, 3, 6-octatriene (8.41%), delta-3-carene (5.55%), α-caryophyllene (4.36%), and α-limonene (3.42%).The antioxidant activities of all extracts were examined using two complementary methods, namely diphenylpicrylhydrazyl (DPPH) and ferric reducing power (FRAP). In both methods, the methanol extract exhibited a higher activity than methylene chloride and essential oil extracts. A higher content of both total phenolics and flavonoids were found in the methanolic extract compared with other extracts. Furthermore, the methanol extract had higher antibacterial activity compared to methylene chloride and the essential oil extracts. Due to their antioxidant and antibacterial properties, the leaf extracts from S. cumini may be used as natural preservative ingredients in food and/or pharmaceutical industries.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1

Figure 1. Free radical scavenging activity of extracts from S. cumini leaves: A) methanolic extracts (Me-OH); B) methylene chloride extracts (Me-Cl); C) essential oils (E. oils).

Butylated hydroxytoluene (BHT) is included as a positive control. Activity was measure by the scavenging of DPPH radicals. Each value is expressed as the mean ± standard deviation.

Similar articles

Cited by

References

    1. McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108: 652–659. - PubMed
    1. Halliwell B (1997) Antioxidants and human disease: a general introduction. Nut Rev 55(1): 44–52. - PubMed
    1. Li HB, Wong CC, Cheng KW, Chen F (2008) Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT – Food Sci Technol 41: 385–390.
    1. Peschel W, Sanchez-Rabaneda F, Dieckmann W, Plescher A, Gartzia I, et al. (2006) An industrial approach in the search of natural antioxidants from vegetable and fruits wastes. Food Chem 97: 137–150.
    1. Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, et al. (1995) Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Archives of Biochem Biophy 322(2): 339–346. - PubMed

MeSH terms

Substances

Grants and funding

The authors have no support or funding to report.

LinkOut - more resources