Association between ancient bone preservation and dna yield: a multidisciplinary approach - PubMed (original) (raw)
doi: 10.1002/ajpa.22262. Epub 2013 Mar 21.
Affiliations
- PMID: 23595645
- DOI: 10.1002/ajpa.22262
Association between ancient bone preservation and dna yield: a multidisciplinary approach
C Sosa et al. Am J Phys Anthropol. 2013 May.
Abstract
Ancient molecular typing depends on DNA survival in archaeological bones. Finding valuable tools to predict DNA presence in ancient samples, which can be measured prior to undertaking a genetic study, has become an important issue as a consequence of the peculiarities of archaeological samples. Since the survival of DNA is explained by complex interrelations of multiple variables, the aim of the present study was to analyze morphological, structural, chemical, and biological aspects of a set of medieval human bones, to provide an accurate reflection of the state of preservation of the bony components and to relate it with DNA presence. Archaeological bones that yielded amplifiable DNA presented high collagen content (generally more than 12%), low racemization values of aspartic acid (lesser than 0.08), leucine and glutamic acid, low infrared splitting factor, small size of crystallite, and more compact appearance of bone in the scanning electron micrographs. Whether these patterns are characteristic of ancient bones or specific of each burial site or specimen requires further investigation.
Copyright © 2013 Wiley Periodicals, Inc.
Similar articles
- Methodological strategies to assess the degree of bone preservation for ancient DNA studies.
Scorrano G, Valentini F, Martínez-Labarga C, Rolfo MF, Fiammenghi A, Lo Vetro D, Martini F, Casoli A, Ferraris G, Palleschi G, Palleschi A, Rickards O. Scorrano G, et al. Ann Hum Biol. 2015 Jan;42(1):10-9. doi: 10.3109/03014460.2014.954614. Epub 2014 Sep 18. Ann Hum Biol. 2015. PMID: 25231926 - DNA in ancient bone - where is it located and how should we extract it?
Campos PF, Craig OE, Turner-Walker G, Peacock E, Willerslev E, Gilbert MT. Campos PF, et al. Ann Anat. 2012 Jan 20;194(1):7-16. doi: 10.1016/j.aanat.2011.07.003. Epub 2011 Jul 30. Ann Anat. 2012. PMID: 21855309 - DNA and bone structure preservation in medieval human skeletons.
Coulson-Thomas YM, Norton AL, Coulson-Thomas VJ, Florencio-Silva R, Ali N, Elmrghni S, Gil CD, Sasso GR, Dixon RA, Nader HB. Coulson-Thomas YM, et al. Forensic Sci Int. 2015 Jun;251:186-94. doi: 10.1016/j.forsciint.2015.04.005. Epub 2015 Apr 13. Forensic Sci Int. 2015. PMID: 25912776 - Predicting protein decomposition: the case of aspartic-acid racemization kinetics.
Collins MJ, Waite ER, van Duin AC. Collins MJ, et al. Philos Trans R Soc Lond B Biol Sci. 1999 Jan 29;354(1379):51-64. doi: 10.1098/rstb.1999.0359. Philos Trans R Soc Lond B Biol Sci. 1999. PMID: 10091247 Free PMC article. Review. - Aspartic acid nucleates the apatite crystallites of bone: a hypothesis.
Sarig S. Sarig S. Bone. 2004 Jul;35(1):108-13. doi: 10.1016/j.bone.2004.02.020. Bone. 2004. PMID: 15207746 Review.
Cited by
- Ancient DNA analysis of 8000 B.C. near eastern farmers supports an early neolithic pioneer maritime colonization of Mainland Europe through Cyprus and the Aegean Islands.
Fernández E, Pérez-Pérez A, Gamba C, Prats E, Cuesta P, Anfruns J, Molist M, Arroyo-Pardo E, Turbón D. Fernández E, et al. PLoS Genet. 2014 Jun 5;10(6):e1004401. doi: 10.1371/journal.pgen.1004401. eCollection 2014 Jun. PLoS Genet. 2014. PMID: 24901650 Free PMC article. - Diagnostic models to predict nuclear DNA and mitochondrial DNA recovery from incinerated teeth.
Rahmat RA, Humphries MA, Saedon NA, Self PG, Linacre AMT. Rahmat RA, et al. Int J Legal Med. 2023 Sep;137(5):1353-1360. doi: 10.1007/s00414-023-03017-x. Epub 2023 Jun 12. Int J Legal Med. 2023. PMID: 37306739 - Screening archaeological bone for palaeogenetic and palaeoproteomic studies.
Kontopoulos I, Penkman K, Mullin VE, Winkelbach L, Unterländer M, Scheu A, Kreutzer S, Hansen HB, Margaryan A, Teasdale MD, Gehlen B, Street M, Lynnerup N, Liritzis I, Sampson A, Papageorgopoulou C, Allentoft ME, Burger J, Bradley DG, Collins MJ. Kontopoulos I, et al. PLoS One. 2020 Jun 25;15(6):e0235146. doi: 10.1371/journal.pone.0235146. eCollection 2020. PLoS One. 2020. PMID: 32584871 Free PMC article. - Characterizing the postmortem human bone microbiome from surface-decomposed remains.
Emmons AL, Mundorff AZ, Keenan SW, Davoren J, Andronowski J, Carter DO, DeBruyn JM. Emmons AL, et al. PLoS One. 2020 Jul 8;15(7):e0218636. doi: 10.1371/journal.pone.0218636. eCollection 2020. PLoS One. 2020. PMID: 32639969 Free PMC article. - Predicting sample success for large-scale ancient DNA studies on marine mammals.
Keighley X, Bro-Jørgensen MH, Ahlgren H, Szpak P, Ciucani MM, Sánchez Barreiro F, Howse L, Gotfredsen AB, Glykou A, Jordan P, Lidén K, Olsen MT. Keighley X, et al. Mol Ecol Resour. 2021 May;21(4):1149-1166. doi: 10.1111/1755-0998.13331. Epub 2021 Feb 26. Mol Ecol Resour. 2021. PMID: 33463014 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources