Molecular dissection of bacterial nanowires - PubMed (original) (raw)
Comment
Molecular dissection of bacterial nanowires
Thomas Boesen et al. mBio. 2013.
Abstract
The discovery of bacterial conductive structures, termed nanowires, has intrigued scientists for almost a decade. Nanowires enable bacteria to transfer electrons over micrometer distances to extracellular electron acceptors such as insoluble metal oxides or electrodes. Nanowires are pilus based and in Geobacter sulfurreducens are composed of the type IV pilin subunit PilA. Multiheme c-type cytochromes have been shown to attach to nanowire pili. Two hypotheses have been proposed for electron conduction in nanowires. The first (termed the metal-like conductivity or MLC hypothesis) claims that the pilus itself has the electron-conductive properties and the attached cytochromes mediate transfer to the final electron acceptor, whereas the second hypothesis (termed the superexchange conductivity or SEC hypothesis) suggests that electrons are "hopping" between heme groups in cytochromes closely aligned with the pilus as a scaffold. In their recent article in mBio, Vargas et al. [M. Vargas, N. S. Malvankar, P.-L. Tremblay, C. Leang, J. A. Smith, P. Patel, O. Snoeyenbos-West, K. P. Nevin, and D. R. Lovley, mBio 4(2):e00210-13, 2013] address this ambiguity through an analysis of strain Aro-5, a G. sulfurreducens PilA mutant lacking aromatic residues in the nonconserved portion of PilA. These residues were suspected of involvement in electron transport according to the MLC hypothesis. The G. sulfurreducens mutant had reduced conductive properties, lending important support to the MLC hypothesis. The data also highlight the need for further and more conclusive evidence for one or the other hypothesis.
Figures
FIG 1
Cartoon representation of the P. aeruginosa PAK pilin structure (blue) docked into the cryoelectron microscopy density map (gray) of the type IV pilus of Neisseria gonorrhoeae to show the positions of the residues corresponding to four of the five mutated aromatic residues in G. sulfurreducens PilA in the context of the pilus. Residues corresponding to F53 and Y56 are shown in space fill and are colored red. These residues point toward the hydrophobic core of the pilus. Residues corresponding to Y61 and F80 are shown in space fill and are colored orange. These residues are located at the bottom and top of the head domain of the pilin, and they are pointing outward from the pilus. The figure was made with UCSF Chimera (14) and Protein Data Bank entries 2HIL and 1OQW, as well as EMDB entry EM-1236.
Comment on
- Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens.
Vargas M, Malvankar NS, Tremblay PL, Leang C, Smith JA, Patel P, Snoeyenbos-West O, Nevin KP, Lovley DR. Vargas M, et al. mBio. 2013 Mar 12;4(2):e00105-13. doi: 10.1128/mBio.00105-13. mBio. 2013. PMID: 23481602 Free PMC article.
Similar articles
- Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens.
Vargas M, Malvankar NS, Tremblay PL, Leang C, Smith JA, Patel P, Snoeyenbos-West O, Nevin KP, Lovley DR. Vargas M, et al. mBio. 2013 Mar 12;4(2):e00105-13. doi: 10.1128/mBio.00105-13. mBio. 2013. PMID: 23481602 Free PMC article. - Significance of a Posttranslational Modification of the PilA Protein of Geobacter sulfurreducens for Surface Attachment, Biofilm Formation, and Growth on Insoluble Extracellular Electron Acceptors.
Richter LV, Franks AE, Weis RM, Sandler SJ. Richter LV, et al. J Bacteriol. 2017 Mar 28;199(8):e00716-16. doi: 10.1128/JB.00716-16. Print 2017 Apr 15. J Bacteriol. 2017. PMID: 28138101 Free PMC article. - Structural basis for metallic-like conductivity in microbial nanowires.
Malvankar NS, Vargas M, Nevin K, Tremblay PL, Evans-Lutterodt K, Nykypanchuk D, Martz E, Tuominen MT, Lovley DR. Malvankar NS, et al. mBio. 2015 Mar 3;6(2):e00084. doi: 10.1128/mBio.00084-15. mBio. 2015. PMID: 25736881 Free PMC article. - Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function.
Lovley DR, Malvankar NS. Lovley DR, et al. Environ Microbiol. 2015 Jul;17(7):2209-15. doi: 10.1111/1462-2920.12708. Epub 2015 Jan 27. Environ Microbiol. 2015. PMID: 25384844 Review. - Geobacter Protein Nanowires.
Lovley DR, Walker DJF. Lovley DR, et al. Front Microbiol. 2019 Sep 24;10:2078. doi: 10.3389/fmicb.2019.02078. eCollection 2019. Front Microbiol. 2019. PMID: 31608018 Free PMC article. Review.
Cited by
- Interkingdom networking within the oral microbiome.
Nobbs AH, Jenkinson HF. Nobbs AH, et al. Microbes Infect. 2015 Jul;17(7):484-92. doi: 10.1016/j.micinf.2015.03.008. Epub 2015 Mar 21. Microbes Infect. 2015. PMID: 25805401 Free PMC article. - Editorial.
Filloux A. Filloux A. FEMS Microbiol Rev. 2015 Jan;39(1):1. doi: 10.1093/femsre/fuu005. FEMS Microbiol Rev. 2015. PMID: 25793962 No abstract available. - Dissecting the Structural and Conductive Functions of Nanowires in Geobacter sulfurreducens Electroactive Biofilms.
Ye Y, Liu X, Nealson KH, Rensing C, Qin S, Zhou S. Ye Y, et al. mBio. 2021 Feb 22;13(1):e0382221. doi: 10.1128/mbio.03822-21. Epub 2022 Feb 15. mBio. 2021. PMID: 35164556 Free PMC article. - Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives.
Berry JL, Pelicic V. Berry JL, et al. FEMS Microbiol Rev. 2015 Jan;39(1):134-54. doi: 10.1093/femsre/fuu001. Epub 2014 Dec 4. FEMS Microbiol Rev. 2015. PMID: 25793961 Free PMC article. Review. - Amyloid Structures as Biofilm Matrix Scaffolds.
Taglialegna A, Lasa I, Valle J. Taglialegna A, et al. J Bacteriol. 2016 Sep 9;198(19):2579-88. doi: 10.1128/JB.00122-16. Print 2016 Oct 1. J Bacteriol. 2016. PMID: 27185827 Free PMC article. Review.
References
- Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. U. S. A. 103:11358–11363 - PMC - PubMed
- Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101 - PubMed
- Wanger G, Gorby Y, El-Naggar MY, Yuzvinsky TD, Schaudinn C, Gorur A, Sedghizadeh PP. 2013. Electrically conductive bacterial nanowires in bisphosphonate-related osteonecrosis of the jaw biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 115:71–78 - PubMed
- Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR. 2011. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6:573–579 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources