Completing the series of +2 ions for the lanthanide elements: synthesis of molecular complexes of Pr2+, Gd2+, Tb2+, and Lu2+ - PubMed (original) (raw)
. 2013 Jul 3;135(26):9857-68.
doi: 10.1021/ja403753j. Epub 2013 May 22.
Affiliations
- PMID: 23697603
- DOI: 10.1021/ja403753j
Completing the series of +2 ions for the lanthanide elements: synthesis of molecular complexes of Pr2+, Gd2+, Tb2+, and Lu2+
Matthew R MacDonald et al. J Am Chem Soc. 2013.
Abstract
The first examples of crystallographically characterizable complexes of Tb(2+), Pr(2+), Gd(2+), and Lu(2+) have been isolated, which demonstrate that Ln(2+) ions are accessible in soluble molecules for all of the lanthanides except radioactive promethium. The first molecular Tb(2+) complexes have been obtained from the reaction of Cp'3Ln (Cp' = C5H4SiMe3, Ln = rare earth) with potassium in the presence of 18-crown-6 in Et2O at -35 °C under argon: [(18-crown-6)K][Cp'3Tb], {[(18-crown-6)K][Cp'3Tb]}n, and {[K(18-crown-6)]2(μ-Cp')}{Cp'3Tb}. The first complex is analogous to previously isolated Y(2+), Ho(2+), and Er(2+) complexes, the second complex shows an isomeric structural form of these Ln(2+) complexes, and the third complex shows that [(18-crown-6)K](1+) alone is not the only cation that will stabilize these reactive Ln(2+) species, a result that led to further exploration of cation variants. With 2.2.2-cryptand in place of 18-crown-6 in the Cp'3Ln/K reaction, a more stable complex of Tb(2+) was produced as well as more stable Y(2+), Ho(2+), and Er(2+) analogs: [K(2.2.2-cryptand)][Cp'3Ln]. Exploration of this 2.2.2-cryptand-based reaction with the remaining lanthanides for which Ln(2+) had not been observed in molecular species provided crystalline Pr(2+), Gd(2+), and Lu(2+) complexes. These Ln(2+) complexes, [K(2.2.2-cryptand)][Cp'3Ln] (Ln = Y, Pr, Gd, Tb, Ho, Er, Lu), all have similar UV-vis spectra and exhibit Ln-C(Cp') bond distances that are ~0.03 Å longer than those in the Ln(3+) precursors, Cp'3Ln. These data, as well as density functional theory calculations and EPR spectra, suggest that a 4f(n)5d(1) description of the electron configuration in these Ln(2+) ions is more appropriate than 4f(n+1).
Similar articles
- Structural, spectroscopic, and theoretical comparison of traditional vs recently discovered Ln(2+) ions in the [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln] complexes: the variable nature of Dy(2+) and Nd(2+).
Fieser ME, MacDonald MR, Krull BT, Bates JE, Ziller JW, Furche F, Evans WJ. Fieser ME, et al. J Am Chem Soc. 2015 Jan 14;137(1):369-82. doi: 10.1021/ja510831n. Epub 2014 Dec 26. J Am Chem Soc. 2015. PMID: 25541886 - Evaluating electrochemical accessibility of 4f_n_5d1 and 4f_n_+1 Ln(II) ions in (C5H4SiMe3)3Ln and (C5Me4H)3Ln complexes.
Trinh MT, Wedal JC, Evans WJ. Trinh MT, et al. Dalton Trans. 2021 Oct 19;50(40):14384-14389. doi: 10.1039/d1dt02427b. Dalton Trans. 2021. PMID: 34569559 - Expanding rare-earth oxidation state chemistry to molecular complexes of holmium(II) and erbium(II).
MacDonald MR, Bates JE, Fieser ME, Ziller JW, Furche F, Evans WJ. MacDonald MR, et al. J Am Chem Soc. 2012 May 23;134(20):8420-3. doi: 10.1021/ja303357w. Epub 2012 May 14. J Am Chem Soc. 2012. PMID: 22583320 - Record High Single-Ion Magnetic Moments Through 4f(n)5d(1) Electron Configurations in the Divalent Lanthanide Complexes [(C5H4SiMe3)3Ln]⁻.
Meihaus KR, Fieser ME, Corbey JF, Evans WJ, Long JR. Meihaus KR, et al. J Am Chem Soc. 2015 Aug 12;137(31):9855-60. doi: 10.1021/jacs.5b03710. Epub 2015 Jul 28. J Am Chem Soc. 2015. PMID: 26168303 - Utility of Lithium in Rare-Earth Metal Reduction Reactions to Form Nontraditional Ln2+ Complexes and Unusual [Li(2.2.2-cryptand)]1+ Cations.
Huh DN, Darago LE, Ziller JW, Evans WJ. Huh DN, et al. Inorg Chem. 2018 Feb 19;57(4):2096-2102. doi: 10.1021/acs.inorgchem.7b03000. Epub 2018 Feb 2. Inorg Chem. 2018. PMID: 29393645
Cited by
- Open-shell lanthanide(II+) or -(III+) complexes bearing σ-silyl and silylene ligands: synthesis, structure, and bonding analysis.
Zitz R, Arp H, Hlina J, Walewska M, Marschner C, Szilvási T, Blom B, Baumgartner J. Zitz R, et al. Inorg Chem. 2015 Apr 6;54(7):3306-15. doi: 10.1021/ic502991p. Epub 2015 Mar 10. Inorg Chem. 2015. PMID: 25756230 Free PMC article. - Neutral "Cp-Free" Silyl-Lanthanide(II) Complexes: Synthesis, Structure, and Bonding Analysis.
Zitz R, Hlina J, Gatterer K, Marschner C, Szilvási T, Baumgartner J. Zitz R, et al. Inorg Chem. 2015 Jul 20;54(14):7065-72. doi: 10.1021/acs.inorgchem.5b01072. Epub 2015 Jul 1. Inorg Chem. 2015. PMID: 26132550 Free PMC article. - Heteroleptic Samarium(III) Chalcogenide Complexes: Opportunities for Giant Exchange Coupling in Bridging σ- and π-Radical Lanthanide Dichalcogenides.
Goodwin CAP, Réant BLL, Vettese GF, Kragskow JGC, Giansiracusa MJ, DiMucci IM, Lancaster KM, Mills DP, Sproules S. Goodwin CAP, et al. Inorg Chem. 2020 Jun 1;59(11):7571-7583. doi: 10.1021/acs.inorgchem.0c00470. Epub 2020 May 18. Inorg Chem. 2020. PMID: 32421315 Free PMC article. - Electrochemical investigation of the Eu3+/2+ redox couple in complexes with variable numbers of glycinamide and acetate pendant arms.
Burnett ME, Adebesin B, Funk AM, Kovacs Z, Sherry AD, Ekanger LA, Allen MJ, Green KN, Ratnakar SJ. Burnett ME, et al. Eur J Inorg Chem. 2017 Nov 24;2017(43):5001-5005. doi: 10.1002/ejic.201701070. Epub 2017 Nov 21. Eur J Inorg Chem. 2017. PMID: 29403330 Free PMC article. - Distinct electronic structures and bonding interactions in inverse-sandwich samarium and ytterbium biphenyl complexes.
Xiao Y, Zhao XK, Wu T, Miller JT, Hu HS, Li J, Huang W, Diaconescu PL. Xiao Y, et al. Chem Sci. 2020 Oct 29;12(1):227-238. doi: 10.1039/d0sc03555f. Chem Sci. 2020. PMID: 34168742 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous