Free energy of solvated salt bridges: a simulation and experimental study - PubMed (original) (raw)
. 2013 Jun 20;117(24):7254-9.
doi: 10.1021/jp4024469. Epub 2013 Jun 11.
Affiliations
- PMID: 23697872
- DOI: 10.1021/jp4024469
Free energy of solvated salt bridges: a simulation and experimental study
Andrew D White et al. J Phys Chem B. 2013.
Abstract
Charged amino acids are the most common on surfaces of proteins and understanding the interactions between these charged amino acids, salt bridging, is crucial for understanding protein-protein interactions. Previous simulations have been limited to implicit solvent or fixed binding geometry due to the sampling required for converged free energies. Using well-tempered metadynamics, we have calculated salt bridge free energy surfaces in water and confirmed the results with NMR experiments. The simulations give binding free energies, quantitative ranking of salt bridging strength, and insights into the hydration of the salt bridges. The arginine-aspartate salt bridge was found to be the weakest and arginine-glutamate the strongest, showing that arginine can discriminate between aspartate and glutamate, whereas the salt bridges with lysine are indistinguishable in their free energy. The salt bridging hydration is found to be complementary to salt bridge orientation with arginine having specific orientations.
Similar articles
- Free energy landscape of protein folding in water: explicit vs. implicit solvent.
Zhou R. Zhou R. Proteins. 2003 Nov 1;53(2):148-61. doi: 10.1002/prot.10483. Proteins. 2003. PMID: 14517967 - Close-range electrostatic interactions in proteins.
Kumar S, Nussinov R. Kumar S, et al. Chembiochem. 2002 Jul 2;3(7):604-17. doi: 10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X. Chembiochem. 2002. PMID: 12324994 Review. - Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings.
Bosshard HR, Marti DN, Jelesarov I. Bosshard HR, et al. J Mol Recognit. 2004 Jan-Feb;17(1):1-16. doi: 10.1002/jmr.657. J Mol Recognit. 2004. PMID: 14872533 Review.
Cited by
- Predicting chemical shifts with graph neural networks.
Yang Z, Chakraborty M, White AD. Yang Z, et al. Chem Sci. 2021 Jul 9;12(32):10802-10809. doi: 10.1039/d1sc01895g. eCollection 2021 Aug 18. Chem Sci. 2021. PMID: 34476061 Free PMC article. - Protein- and Cell-Resistance of Zwitterionic Peptide-Based Self-Assembled Monolayers: Anti-Biofouling Tests and Surface Force Analysis.
Chang R, Quimada Mondarte EA, Palai D, Sekine T, Kashiwazaki A, Murakami D, Tanaka M, Hayashi T. Chang R, et al. Front Chem. 2021 Oct 6;9:748017. doi: 10.3389/fchem.2021.748017. eCollection 2021. Front Chem. 2021. PMID: 34692644 Free PMC article. - Mechanism of gating by calcium in connexin hemichannels.
Lopez W, Ramachandran J, Alsamarah A, Luo Y, Harris AL, Contreras JE. Lopez W, et al. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7986-E7995. doi: 10.1073/pnas.1609378113. Epub 2016 Nov 21. Proc Natl Acad Sci U S A. 2016. PMID: 27872296 Free PMC article. - Effects of Selective Substitution of Cysteine Residues on the Conformational Properties of Chlorotoxin Explored by Molecular Dynamics Simulations.
Gregory AJ, Voit-Ostricki L, Lovas S, Watts CR. Gregory AJ, et al. Int J Mol Sci. 2019 Mar 13;20(6):1261. doi: 10.3390/ijms20061261. Int J Mol Sci. 2019. PMID: 30871150 Free PMC article. - Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission.
Schöneberg J, Lehmann M, Ullrich A, Posor Y, Lo WT, Lichtner G, Schmoranzer J, Haucke V, Noé F. Schöneberg J, et al. Nat Commun. 2017 Jun 19;8:15873. doi: 10.1038/ncomms15873. Nat Commun. 2017. PMID: 28627515 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources