DMEAS: DNA methylation entropy analysis software - PubMed (original) (raw)
DMEAS: DNA methylation entropy analysis software
Jianlin He et al. Bioinformatics. 2013.
Abstract
Summary: DMEAS is the first user-friendly tool dedicated to analyze the distribution of DNA methylation patterns for the quantification of epigenetic heterogeneity. It supports the analysis of both locus-specific and genome-wide bisulfite sequencing data. DMEAS progressively scans the mapping results of bisulfite sequencing reads to extract DNA methylation patterns for contiguous CpG dinucleotides. It determines the DNA methylation level and calculates methylation entropy for genomic segments to enable the quantitative assessment of DNA methylation variations observed in cell populations.
Availability and implementation: DMEAS program, user guide and all the testing data are freely available from http://sourceforge.net/projects/dmeas/files/
Figures
Fig. 1.
Methylation level/entropy analysis with DMEAS. (A) The histogram of DNA methylation level/entropy. (B) The scatter plot for the association between the methylation level and the methylation entropy. (C) The output table with DNA methylation entropy/level. (D) DNA methylation pattern heatmap for locus-specific data. The blue, red or gray represents for unmethylated, methylated or unknown methylation status, respectively
Similar articles
- ampliMethProfiler: a pipeline for the analysis of CpG methylation profiles of targeted deep bisulfite sequenced amplicons.
Scala G, Affinito O, Palumbo D, Florio E, Monticelli A, Miele G, Chiariotti L, Cocozza S. Scala G, et al. BMC Bioinformatics. 2016 Nov 25;17(1):484. doi: 10.1186/s12859-016-1380-3. BMC Bioinformatics. 2016. PMID: 27884103 Free PMC article. - CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data.
Su J, Yan H, Wei Y, Liu H, Liu H, Wang F, Lv J, Wu Q, Zhang Y. Su J, et al. Nucleic Acids Res. 2013 Jan 7;41(1):e4. doi: 10.1093/nar/gks829. Epub 2012 Aug 31. Nucleic Acids Res. 2013. PMID: 22941633 Free PMC article. - BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing.
Lutsik P, Feuerbach L, Arand J, Lengauer T, Walter J, Bock C. Lutsik P, et al. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W551-6. doi: 10.1093/nar/gkr312. Epub 2011 May 11. Nucleic Acids Res. 2011. PMID: 21565797 Free PMC article. - Strategies for analyzing bisulfite sequencing data.
Wreczycka K, Gosdschan A, Yusuf D, Grüning B, Assenov Y, Akalin A. Wreczycka K, et al. J Biotechnol. 2017 Nov 10;261:105-115. doi: 10.1016/j.jbiotec.2017.08.007. Epub 2017 Aug 16. J Biotechnol. 2017. PMID: 28822795 Review. - Methodological aspects of whole-genome bisulfite sequencing analysis.
Adusumalli S, Mohd Omar MF, Soong R, Benoukraf T. Adusumalli S, et al. Brief Bioinform. 2015 May;16(3):369-79. doi: 10.1093/bib/bbu016. Epub 2014 May 27. Brief Bioinform. 2015. PMID: 24867940 Review.
Cited by
- msPIPE: a pipeline for the analysis and visualization of whole-genome bisulfite sequencing data.
Kim H, Sim M, Park N, Kwon K, Kim J, Kim J. Kim H, et al. BMC Bioinformatics. 2022 Sep 19;23(1):383. doi: 10.1186/s12859-022-04925-2. BMC Bioinformatics. 2022. PMID: 36123620 Free PMC article. - Deciphering the heterogeneity in DNA methylation patterns during stem cell differentiation and reprogramming.
Shao X, Zhang C, Sun MA, Lu X, Xie H. Shao X, et al. BMC Genomics. 2014 Nov 18;15(1):978. doi: 10.1186/1471-2164-15-978. BMC Genomics. 2014. PMID: 25404570 Free PMC article. - Estimation of the methylation pattern distribution from deep sequencing data.
Lin P, Forêt S, Wilson SR, Burden CJ. Lin P, et al. BMC Bioinformatics. 2015 May 6;16:145. doi: 10.1186/s12859-015-0600-6. BMC Bioinformatics. 2015. PMID: 25943746 Free PMC article. - Comprehensive analysis of DNA methylation data with RnBeads.
Assenov Y, Müller F, Lutsik P, Walter J, Lengauer T, Bock C. Assenov Y, et al. Nat Methods. 2014 Nov;11(11):1138-1140. doi: 10.1038/nmeth.3115. Epub 2014 Sep 28. Nat Methods. 2014. PMID: 25262207 Free PMC article. - Quantification of tumour evolution and heterogeneity via Bayesian epiallele detection.
Barrett JE, Feber A, Herrero J, Tanic M, Wilson GA, Swanton C, Beck S. Barrett JE, et al. BMC Bioinformatics. 2017 Jul 25;18(1):354. doi: 10.1186/s12859-017-1753-2. BMC Bioinformatics. 2017. PMID: 28743252 Free PMC article.
References
- Shibata D. Cancer. Heterogeneity and tumor history. Science. 2012;336:304–305. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases