Nanometer-scale fabrication of hydrogen silsesquioxane (HSQ) films with post exposure baking - PubMed (original) (raw)
. 2013 Mar;13(3):1918-22.
doi: 10.1166/jnn.2013.6986.
Affiliations
- PMID: 23755620
- DOI: 10.1166/jnn.2013.6986
Nanometer-scale fabrication of hydrogen silsesquioxane (HSQ) films with post exposure baking
Dong-Hyun Kim et al. J Nanosci Nanotechnol. 2013 Mar.
Abstract
A nanometer-scale grating structure with a 60-nm-wide gap and 200-nm-wide ridge has been successfully demonstrated on a silicon-on-insulator substrate by using a 220-nm-thick hydrogen silsesquioxane (HSQ) negative tone electron beam resist. A post exposure baking (PEB) process and hot development process with low concentration (3.5 wt%) of tetramethylammonium hydroxide (TMAH) solution were introduced to realize the grating pattern. To study the effects of post exposure baking on the HSQ resist, Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses were carried out. From the FT-IR and XPS analyses, it was verified that a thin SiO2 with high cross-linked network structure was formed on the HSQ surface during the PEB step. This SiO2 layer prevents the formation of unwanted bonds on the HSQ surface, which results in clearly defined grating structures with a 60-nm-gap and 200-nm-wide-ridge on the 220-nm-thick HSQ resist. The nanometer-scale grating pattern was successfully transfered to the 280-nm-thick silicon layer of a silicon-on-insulator (SOI) substrate by using inductively-coupled-plasma-reactive-ion-etching (ICP-RIE).
Similar articles
- Sub-50 nm template fabrications for nanoimprint lithography using hydrogen silsesquioxane and silicon nitride.
Shim JY, Baek KH, Park KS, Shin HS, No KS, Lee K, Do LM. Shim JY, et al. J Nanosci Nanotechnol. 2010 May;10(5):3628-30. doi: 10.1166/jnn.2010.2278. J Nanosci Nanotechnol. 2010. PMID: 20359014 - Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art.
Grigorescu AE, Hagen CW. Grigorescu AE, et al. Nanotechnology. 2009 Jul 22;20(29):292001. doi: 10.1088/0957-4484/20/29/292001. Epub 2009 Jul 1. Nanotechnology. 2009. PMID: 19567961 Review. - Characterization of the morphology and composition of commercial negative resists used for lithographic processes.
Schuster BE, Haug A, Häffner M, Blideran MM, Fleischer M, Peisert H, Kern DP, Chassé T. Schuster BE, et al. Anal Bioanal Chem. 2009 Apr;393(8):1899-905. doi: 10.1007/s00216-008-2513-y. Epub 2008 Nov 22. Anal Bioanal Chem. 2009. PMID: 19030844 - Reliable Nanofabrication of Single-Crystal Diamond Photonic Nanostructures for Nanoscale Sensing.
Radtke M, Nelz R, Slablab A, Neu E. Radtke M, et al. Micromachines (Basel). 2019 Oct 24;10(11):718. doi: 10.3390/mi10110718. Micromachines (Basel). 2019. PMID: 31653033 Free PMC article. - Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography.
Vila-Comamala J, Gorelick S, Guzenko VA, Färm E, Ritala M, David C. Vila-Comamala J, et al. Nanotechnology. 2010 Jul 16;21(28):285305. doi: 10.1088/0957-4484/21/28/285305. Epub 2010 Jun 18. Nanotechnology. 2010. PMID: 20562479
Cited by
- Integrated near-infrared spectral sensing.
Hakkel KD, Petruzzella M, Ou F, van Klinken A, Pagliano F, Liu T, van Veldhoven RPJ, Fiore A. Hakkel KD, et al. Nat Commun. 2022 Jan 10;13(1):103. doi: 10.1038/s41467-021-27662-1. Nat Commun. 2022. PMID: 35013200 Free PMC article.
LinkOut - more resources
Other Literature Sources
Miscellaneous