Structural basis for phosphorylation-triggered autophagic clearance of Salmonella - PubMed (original) (raw)
. 2013 Sep 15;454(3):459-66.
doi: 10.1042/BJ20121907.
Hironori Suzuki, Evgenij Fiskin, Philipp Wild, Andreas Kniss, Alexis Rozenknop, Ryuichi Kato, Masato Kawasaki, David G McEwan, Frank Löhr, Peter Güntert, Ivan Dikic, Soichi Wakatsuki, Volker Dötsch
Affiliations
- PMID: 23805866
- DOI: 10.1042/BJ20121907
Structural basis for phosphorylation-triggered autophagic clearance of Salmonella
Vladimir V Rogov et al. Biochem J. 2013.
Abstract
Selective autophagy is mediated by the interaction of autophagy modifiers and autophagy receptors that also bind to ubiquitinated cargo. Optineurin is an autophagy receptor that plays a role in the clearance of cytosolic Salmonella. The interaction between receptors and modifiers is often relatively weak, with typical values for the dissociation constant in the low micromolar range. The interaction of optineurin with autophagy modifiers is even weaker, but can be significantly enhanced through phosphorylation by the TBK1 {TANK [TRAF (tumour-necrosis-factor-receptor-associated factor)-associated nuclear factor κB activator]-binding kinase 1}. In the present study we describe the NMR and crystal structures of the autophagy modifier LC3B (microtubule-associated protein light chain 3 beta) in complex with the LC3 interaction region of optineurin either phosphorylated or bearing phospho-mimicking mutations. The structures show that the negative charge induced by phosphorylation is recognized by the side chains of Arg¹¹ and Lys⁵¹ in LC3B. Further mutational analysis suggests that the replacement of the canonical tryptophan residue side chain of autophagy receptors with the smaller phenylalanine side chain in optineurin significantly weakens its interaction with the autophagy modifier LC3B. Through phosphorylation of serine residues directly N-terminally located to the phenylalanine residue, the affinity is increased to the level normally seen for receptor-modifier interactions. Phosphorylation, therefore, acts as a switch for optineurin-based selective autophagy.
Similar articles
- Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth.
Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dötsch V, Bumann D, Dikic I. Wild P, et al. Science. 2011 Jul 8;333(6039):228-33. doi: 10.1126/science.1205405. Epub 2011 May 26. Science. 2011. PMID: 21617041 Free PMC article. - Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1.
Rozenknop A, Rogov VV, Rogova NY, Löhr F, Güntert P, Dikic I, Dötsch V. Rozenknop A, et al. J Mol Biol. 2011 Jul 15;410(3):477-87. doi: 10.1016/j.jmb.2011.05.003. Epub 2011 May 18. J Mol Biol. 2011. PMID: 21620860 - Identification of a splice variant of optineurin which is defective in autophagy and phosphorylation.
Moharir SC, Bansal M, Ramachandran G, Ramaswamy R, Rawat S, Raychaudhuri S, Swarup G. Moharir SC, et al. Biochim Biophys Acta Mol Cell Res. 2018 Nov;1865(11 Pt A):1526-1538. doi: 10.1016/j.bbamcr.2018.08.009. Epub 2018 Aug 16. Biochim Biophys Acta Mol Cell Res. 2018. PMID: 30327196 - Optineurin: A Coordinator of Membrane-Associated Cargo Trafficking and Autophagy.
Ryan TA, Tumbarello DA. Ryan TA, et al. Front Immunol. 2018 May 15;9:1024. doi: 10.3389/fimmu.2018.01024. eCollection 2018. Front Immunol. 2018. PMID: 29867991 Free PMC article. Review. - TBK1 mediates crosstalk between the innate immune response and autophagy.
Weidberg H, Elazar Z. Weidberg H, et al. Sci Signal. 2011 Aug 9;4(187):pe39. doi: 10.1126/scisignal.2002355. Sci Signal. 2011. PMID: 21868362 Review.
Cited by
- Role of Optineurin in the Mitochondrial Dysfunction: Potential Implications in Neurodegenerative Diseases and Cancer.
Weil R, Laplantine E, Curic S, Génin P. Weil R, et al. Front Immunol. 2018 Jun 19;9:1243. doi: 10.3389/fimmu.2018.01243. eCollection 2018. Front Immunol. 2018. PMID: 29971063 Free PMC article. Review. - Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins.
Rogov VV, Suzuki H, Marinković M, Lang V, Kato R, Kawasaki M, Buljubašić M, Šprung M, Rogova N, Wakatsuki S, Hamacher-Brady A, Dötsch V, Dikic I, Brady NR, Novak I. Rogov VV, et al. Sci Rep. 2017 Apr 25;7(1):1131. doi: 10.1038/s41598-017-01258-6. Sci Rep. 2017. PMID: 28442745 Free PMC article. - Fluorescence-based ATG8 sensors monitor localization and function of LC3/GABARAP proteins.
Stolz A, Putyrski M, Kutle I, Huber J, Wang C, Major V, Sidhu SS, Youle RJ, Rogov VV, Dötsch V, Ernst A, Dikic I. Stolz A, et al. EMBO J. 2017 Feb 15;36(4):549-564. doi: 10.15252/embj.201695063. Epub 2016 Dec 27. EMBO J. 2017. PMID: 28028054 Free PMC article. - Solution structure of the autophagy-related protein LC3C reveals a polyproline II motif on a mobile tether with phosphorylation site.
Krichel C, Möckel C, Schillinger O, Huesgen PF, Sticht H, Strodel B, Weiergräber OH, Willbold D, Neudecker P. Krichel C, et al. Sci Rep. 2019 Oct 2;9(1):14167. doi: 10.1038/s41598-019-48155-8. Sci Rep. 2019. PMID: 31578424 Free PMC article. - Mechanisms and Pathophysiological Roles of the ATG8 Conjugation Machinery.
Lystad AH, Simonsen A. Lystad AH, et al. Cells. 2019 Aug 25;8(9):973. doi: 10.3390/cells8090973. Cells. 2019. PMID: 31450711 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous