Slow aromatic ring flips detected despite near-degenerate NMR frequencies of the exchanging nuclei - PubMed (original) (raw)
. 2013 Aug 8;117(31):9241-7.
doi: 10.1021/jp4058065. Epub 2013 Jul 29.
Affiliations
- PMID: 23859599
- DOI: 10.1021/jp4058065
Free article
Slow aromatic ring flips detected despite near-degenerate NMR frequencies of the exchanging nuclei
Ulrich Weininger et al. J Phys Chem B. 2013.
Free article
Abstract
Aromatic ring flips of Phe and Tyr residues are a hallmark of protein dynamics with a long history in molecular biophysics. Ring flips lead to symmetric exchange of nuclei between sites with distinct magnetic environments, which can be probed by NMR spectroscopy. Current knowledge of ring-flip rates originates from rare cases in which the chemical shift difference between the two sites is sufficiently large and the ring-flip rate sufficiently slow, typically kflip < 10(3) s(-1), so that separate peaks are observed in the NMR spectrum for the two nuclei, enabling direct measurement of the flip rate. By contrast, a great majority of aromatic rings show single peaks for each of the pairs of δ or ε nuclei, which commonly are taken as inferential evidence that the flip rate is fast, kflip < 10(3) s(-1), even though rate measurements have not been achieved. Here we report a novel approach that makes it possible to identify slow ring flips in previously inaccessible cases where only single peaks are observed. We demonstrate that Y21 in the bovine pancreatic trypsin inhibitor (BPTI) has a slow ring-flip rate, kflip < 100 s(-1), a result that contrasts with previous estimates of 10(4)-10(6) s(-1) inferred from the single-peak spectrum of Y21. Comparison with a recent 1 ms molecular dynamics trajectory of BPTI shows qualitative agreement and highlights the value of accurate aromatic ring flip data as an important benchmark for molecular dynamics simulations of proteins across wide time scales.
Similar articles
- Ring flips revisited: (13)C relaxation dispersion measurements of aromatic side chain dynamics and activation barriers in basic pancreatic trypsin inhibitor.
Weininger U, Modig K, Akke M. Weininger U, et al. Biochemistry. 2014 Jul 22;53(28):4519-25. doi: 10.1021/bi500462k. Epub 2014 Jul 11. Biochemistry. 2014. PMID: 24983918 - Free-Energy Landscape and Rate Estimation of the Aromatic Ring Flips in Basic Pancreatic Trypsin Inhibitors Using Metadynamics.
Kulkarni M, Söderhjelm P. Kulkarni M, et al. J Chem Theory Comput. 2023 Oct 10;19(19):6605-6618. doi: 10.1021/acs.jctc.3c00460. Epub 2023 Sep 12. J Chem Theory Comput. 2023. PMID: 37698852 Free PMC article. - Aromatic ring-flipping in supercooled water: implications for NMR-based structural biology of proteins.
Skalicky JJ, Mills JL, Sharma S, Szyperski T. Skalicky JJ, et al. J Am Chem Soc. 2001 Jan 24;123(3):388-97. doi: 10.1021/ja003220l. J Am Chem Soc. 2001. PMID: 11456540 - NMR Studies of Aromatic Ring Flips to Probe Conformational Fluctuations in Proteins.
Akke M, Weininger U. Akke M, et al. J Phys Chem B. 2023 Jan 26;127(3):591-599. doi: 10.1021/acs.jpcb.2c07258. Epub 2023 Jan 14. J Phys Chem B. 2023. PMID: 36640108 Free PMC article. Review. - NMR characterization of partially folded and unfolded conformational ensembles of proteins.
Barbar E. Barbar E. Biopolymers. 1999;51(3):191-207. doi: 10.1002/(SICI)1097-0282(1999)51:3<191::AID-BIP3>3.0.CO;2-B. Biopolymers. 1999. PMID: 10516571 Review.
Cited by
- Site-selective 13C labeling of proteins using erythrose.
Weininger U. Weininger U. J Biomol NMR. 2017 Mar;67(3):191-200. doi: 10.1007/s10858-017-0096-7. Epub 2017 Feb 28. J Biomol NMR. 2017. PMID: 28247186 Free PMC article. - Late metabolic precursors for selective aromatic residue labeling.
Schörghuber J, Geist L, Platzer G, Feichtinger M, Bisaccia M, Scheibelberger L, Weber F, Konrat R, Lichtenecker RJ. Schörghuber J, et al. J Biomol NMR. 2018 Jul;71(3):129-140. doi: 10.1007/s10858-018-0188-z. Epub 2018 May 28. J Biomol NMR. 2018. PMID: 29808436 Free PMC article. Review. - Characterizing Fast Conformational Exchange of Aromatic Rings Using Residual Dipolar Couplings: Distinguishing Jumplike Flips from Other Exchange Mechanisms.
Dreydoppel M, Akke M, Weininger U. Dreydoppel M, et al. J Phys Chem B. 2022 Oct 13;126(40):7950-7956. doi: 10.1021/acs.jpcb.2c05097. Epub 2022 Sep 30. J Phys Chem B. 2022. PMID: 36180044 Free PMC article. - Site-selective 1H/2H labeling enables artifact-free 1H CPMG relaxation dispersion experiments in aromatic side chains.
Raum HN, Schörghuber J, Dreydoppel M, Lichtenecker RJ, Weininger U. Raum HN, et al. J Biomol NMR. 2019 Nov;73(10-11):633-639. doi: 10.1007/s10858-019-00275-z. Epub 2019 Sep 10. J Biomol NMR. 2019. PMID: 31506857 Free PMC article. - High five! Methyl probes at five ring positions of phenylalanine explore the hydrophobic core dynamics of zinc finger miniproteins.
Horx P, Geyer A. Horx P, et al. Chem Sci. 2021 Jul 24;12(34):11455-11463. doi: 10.1039/d1sc02346b. eCollection 2021 Sep 1. Chem Sci. 2021. PMID: 34667551 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources