MicroRNA modulation of lipid metabolism and oxidative stress in cardiometabolic diseases - PubMed (original) (raw)
Review
MicroRNA modulation of lipid metabolism and oxidative stress in cardiometabolic diseases
Juan F Aranda et al. Free Radic Biol Med. 2013 Sep.
Abstract
The regulation of the metabolism of cholesterol has been one of the most studied biological processes since its first isolation from gallstones in 1784. High levels of plasma low-density lipoprotein (LDL) cholesterol and reduced levels of plasma high-density lipoprotein (HDL) cholesterol are widely recognized as major risk factors of cardiovascular disease. An imbalance in the production of reactive oxygen species can oxidize LDL particles, increasing the levels of the highly proatherogenic oxidized LDL. Furthermore, under pathological scenarios, numerous molecules can function as pro-oxidants, such as iron or (high levels of) glucose. In addition to the classical mechanisms regulating lipid homeostasis, recent studies have demonstrated the important role of microRNAs (miRNAs) as regulators of lipoprotein metabolism, oxidative derivatives of lipoprotein, and redox balance. Here, we summarize recent findings in the field, highlighting the contributions of some miRNAs to lipid- and oxidative-associated pathologies. We also discuss how therapeutic intervention of miRNAs may be a promising strategy to decrease LDL, increase HDL, and ameliorate lipid- and oxidative-related disorders, including atherosclerosis, nonalcoholic fatty liver disease, and metabolic syndrome.
Keywords: Atherosclerosis; Free radicals; Lipid metabolism; MiRNAs.
© 2013 Elsevier Inc. All rights reserved.
Figures
Figure 1. Schematic overview of miRNAs involved in lipid metabolism and ROS
Different miRNAs are grouped in boxes and /or representative organs in which they target lipid metabolism regulators. Biological processes in which they are involved are also shown. ↑ indicates activation, ⊤ indicates inhibition.
Figure 2. Overview of the potential roles of miRNAs in atherosclerosis
A schematic picture of the pathological scenario in the atherosclerotic plaque. Boxes represent different biological processes implicated in atherosclerotic disease, such as inflammation, monocyte extravasation, apoptosis, oxidative stress or extracellular miRNAs. MiRNAs can modulate either positively or negatively several of these processes. ↑ indicates activation, ⊤ indicates inhibition.
Similar articles
- microRNAs in lipoprotein metabolism and cardiometabolic disorders.
Rotllan N, Price N, Pati P, Goedeke L, Fernández-Hernando C. Rotllan N, et al. Atherosclerosis. 2016 Mar;246:352-60. doi: 10.1016/j.atherosclerosis.2016.01.025. Epub 2016 Jan 18. Atherosclerosis. 2016. PMID: 26828754 Free PMC article. Review. - Oxidative stress in atherosclerosis: the role of microRNAs in arterial remodeling.
Zampetaki A, Dudek K, Mayr M. Zampetaki A, et al. Free Radic Biol Med. 2013 Sep;64:69-77. doi: 10.1016/j.freeradbiomed.2013.06.025. Epub 2013 Jun 21. Free Radic Biol Med. 2013. PMID: 23797034 Review. - MicroRNAs in metabolism and metabolic disorders.
Rottiers V, Näär AM. Rottiers V, et al. Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):239-50. doi: 10.1038/nrm3313. Nat Rev Mol Cell Biol. 2012. PMID: 22436747 Free PMC article. Review. - MicroRNAs and lipid metabolism.
Aryal B, Singh AK, Rotllan N, Price N, Fernández-Hernando C. Aryal B, et al. Curr Opin Lipidol. 2017 Jun;28(3):273-280. doi: 10.1097/MOL.0000000000000420. Curr Opin Lipidol. 2017. PMID: 28333713 Free PMC article. Review. - Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis.
Novák J, Olejníčková V, Tkáčová N, Santulli G. Novák J, et al. Adv Exp Med Biol. 2015;887:79-100. doi: 10.1007/978-3-319-22380-3_5. Adv Exp Med Biol. 2015. PMID: 26662987 Free PMC article.
Cited by
- Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.
Zhong H, Ma M, Liang T, Guo L. Zhong H, et al. J Immunol Res. 2018 Feb 1;2018:2835761. doi: 10.1155/2018/2835761. eCollection 2018. J Immunol Res. 2018. PMID: 29484304 Free PMC article. Review. - MicroRNA Profile of HCV Spontaneous Clarified Individuals, Denotes Previous HCV Infection.
Brochado-Kith Ó, Gómez Sanz A, Real LM, Crespo García J, Ryan Murúa P, Macías J, Cabezas González J, Troya J, Pineda JA, Arias Loste MT, Díez Viñas V, Jiménez-Sousa MÁ, Medrano de Dios LM, Cuesta De la Plaza I, Monzón Fernández S, Resino García S, Fernández-Rodríguez A. Brochado-Kith Ó, et al. J Clin Med. 2019 Jun 14;8(6):849. doi: 10.3390/jcm8060849. J Clin Med. 2019. PMID: 31207946 Free PMC article. - Lipid metabolism, apoptosis and cancer therapy.
Huang C, Freter C. Huang C, et al. Int J Mol Sci. 2015 Jan 2;16(1):924-49. doi: 10.3390/ijms16010924. Int J Mol Sci. 2015. PMID: 25561239 Free PMC article. Review. - Improvement of oxidative stress status by lipoprotein apheresis in Chinese patients with familial hypercholesterolemia.
Wen J, Dong Q, Liu G, Gao Y, Li XL, Jin JL, Li JJ, Guo YL. Wen J, et al. J Clin Lab Anal. 2020 May;34(5):e23161. doi: 10.1002/jcla.23161. Epub 2019 Dec 20. J Clin Lab Anal. 2020. PMID: 31859412 Free PMC article. - Subclinical Detection of Diabetic Cardiomyopathy with MicroRNAs: Challenges and Perspectives.
León LE, Rani S, Fernandez M, Larico M, Calligaris SD. León LE, et al. J Diabetes Res. 2016;2016:6143129. doi: 10.1155/2016/6143129. Epub 2015 Dec 6. J Diabetes Res. 2016. PMID: 26770988 Free PMC article. Review.
References
- Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell. 2009;136:669–687. - PubMed
- Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R01 HL106063/HL/NHLBI NIH HHS/United States
- R01 HL107953/HL/NHLBI NIH HHS/United States
- R01HL107953/HL/NHLBI NIH HHS/United States
- R01HL106063/HL/NHLBI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical