The thioredoxin antioxidant system - PubMed (original) (raw)
Review
The thioredoxin antioxidant system
Jun Lu et al. Free Radic Biol Med. 2014 Jan.
Abstract
The thioredoxin (Trx) system, which is composed of NADPH, thioredoxin reductase (TrxR), and thioredoxin, is a key antioxidant system in defense against oxidative stress through its disulfide reductase activity regulating protein dithiol/disulfide balance. The Trx system provides the electrons to thiol-dependent peroxidases (peroxiredoxins) to remove reactive oxygen and nitrogen species with a fast reaction rate. Trx antioxidant functions are also shown by involvement in DNA and protein repair by reducing ribonucleotide reductase, methionine sulfoxide reductases, and regulating the activity of many redox-sensitive transcription factors. Moreover, Trx systems play critical roles in the immune response, virus infection, and cell death via interaction with thioredoxin-interacting protein. In mammalian cells, the cytosolic and mitochondrial Trx systems, in which TrxRs are high molecular weight selenoenzymes, together with the glutathione-glutaredoxin (Grx) system (NADPH, glutathione reductase, GSH, and Grx) control the cellular redox environment. Recently mammalian thioredoxin and glutathione systems have been found to be able to provide the electrons crossly and to serve as a backup system for each other. In contrast, bacteria TrxRs are low molecular weight enzymes with a structure and reaction mechanism distinct from mammalian TrxR. Many bacterial species possess specific thiol-dependent antioxidant systems, and the significance of the Trx system in the defense against oxidative stress is different. Particularly, the absence of a GSH-Grx system in some pathogenic bacteria such as Helicobacter pylori, Mycobacterium tuberculosis, and Staphylococcus aureus makes the bacterial Trx system essential for survival under oxidative stress. This provides an opportunity to kill these bacteria by targeting the TrxR-Trx system.
Keywords: AhpC; AhpF; Alkyl hydroperoxide peroxidase subunit C; Alkyl hydroperoxide peroxidase subunit F; B. subtilis; BSO; Bacillus subtilis; Bacterioferritin comigratory protein; Bcp; Buthionine sulfoximine; Catalase; Dihydrolipoamide succinyltransferase; E. coli; E. faecalis; Entercoccus faecalis; Escherichia coli; FAD; Flavin adenine dinucleotide; GPx; GR; GSH; GST; Glutaredoxin; Glutathione; Glutathione peroxidise; Glutathione reductase; Glutathione transferase; Grx; H. pylori; HDAC; HTLV-1; Helicobacter pylori; Histone deacetylases; Human T-lymphotropic virus type I; KatA; KatG; Keap1; Kelch-like ECH-associated protein 1; M. tuberculosis; MSH; Methionine-O-sulfoxide reductase; Methionine-S-sulfoxide reductase; Mrx; MsrA; MsrB; Mtr; Mycobacterium tuberculosis; Mycoredoxin; Mycothione; Mycothione reductase; NADPH; Nicotinamide adenine dinucleotide phosphate; Nrf2; Nuclear factor erythroid-related factor 2; PDI; Peroxiredoxin; Protein disulfide isomerase; Prx; RNR; ROS; Ribonucleotide reductase; S. aureus; S. pyogenes; Sec; Staphylococcus aureus; Streptococcus pyogenes; SucB; TGR; TS(2); TXNIP; Thiol peroxidase; Thioredoxin; Thioredoxin glutathione reductase; Thioredoxin interacting protein; Thioredoxin reductase; Tpx; Trx; TrxR; TryR; Trypanothione; Trypanothione reductase; U, selenocysteine; WT; Wild type; antioxidant; catalase peroxidase; glutathione; peroxiredoxin; reactive oxygen species; thioredoxin.
Copyright © 2013 Elsevier Inc. All rights reserved.
Similar articles
- Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.
Si M, Zhang L, Chaudhry MT, Ding W, Xu Y, Chen C, Akbar A, Shen X, Liu SJ. Si M, et al. Appl Environ Microbiol. 2015 Apr;81(8):2781-96. doi: 10.1128/AEM.04221-14. Epub 2015 Feb 13. Appl Environ Microbiol. 2015. PMID: 25681179 Free PMC article. - Inhibition of bacterial thioredoxin reductase: an antibiotic mechanism targeting bacteria lacking glutathione.
Lu J, Vlamis-Gardikas A, Kandasamy K, Zhao R, Gustafsson TN, Engstrand L, Hoffner S, Engman L, Holmgren A. Lu J, et al. FASEB J. 2013 Apr;27(4):1394-403. doi: 10.1096/fj.12-223305. Epub 2012 Dec 17. FASEB J. 2013. PMID: 23248236 - Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption.
Lopert P, Patel M. Lopert P, et al. Redox Biol. 2014 Apr 24;2:667-72. doi: 10.1016/j.redox.2014.04.010. eCollection 2014. Redox Biol. 2014. PMID: 24936441 Free PMC article. - Thioredoxin system in cell death progression.
Lu J, Holmgren A. Lu J, et al. Antioxid Redox Signal. 2012 Dec 15;17(12):1738-47. doi: 10.1089/ars.2012.4650. Epub 2012 Jun 11. Antioxid Redox Signal. 2012. PMID: 22530689 Review. - Regulation of the human thioredoxin gene promoter and its key substrates: a study of functional and putative regulatory elements.
Hawkes HJ, Karlenius TC, Tonissen KF. Hawkes HJ, et al. Biochim Biophys Acta. 2014 Jan;1840(1):303-14. doi: 10.1016/j.bbagen.2013.09.013. Epub 2013 Sep 13. Biochim Biophys Acta. 2014. PMID: 24041992 Review.
Cited by
- The MondoA-dependent TXNIP/GDF15 axis predicts oxaliplatin response in colorectal adenocarcinomas.
Deng J, Pan T, Wang D, Hong Y, Liu Z, Zhou X, An Z, Li L, Alfano G, Li G, Dolcetti L, Evans R, Vicencio JM, Vlckova P, Chen Y, Monypenny J, Gomes CAC, Weitsman G, Ng K, McCarthy C, Yang X, Hu Z, Porter JC, Tape CJ, Yin M, Wei F, Rodriguez-Justo M, Zhang J, Tejpar S, Beatson R, Ng T. Deng J, et al. EMBO Mol Med. 2024 Sep;16(9):2080-2108. doi: 10.1038/s44321-024-00105-2. Epub 2024 Aug 5. EMBO Mol Med. 2024. PMID: 39103698 Free PMC article. - 2-Cys peroxiredoxin is required in successful blood-feeding, reproduction, and antioxidant response in the hard tick Haemaphysalis longicornis.
Kusakisako K, Galay RL, Umemiya-Shirafuji R, Hernandez EP, Maeda H, Talactac MR, Tsuji N, Mochizuki M, Fujisaki K, Tanaka T. Kusakisako K, et al. Parasit Vectors. 2016 Aug 19;9:457. doi: 10.1186/s13071-016-1748-2. Parasit Vectors. 2016. PMID: 27542835 Free PMC article. - A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system.
Iizumi T, Takahashi S, Mashima K, Minami K, Izawa Y, Abe T, Hishiki T, Suematsu M, Kajimura M, Suzuki N. Iizumi T, et al. J Neuroinflammation. 2016 May 4;13(1):99. doi: 10.1186/s12974-016-0564-0. J Neuroinflammation. 2016. PMID: 27143001 Free PMC article. - Targeting the MAPK/ERK and PI3K/AKT Signaling Pathways Affects NRF2, Trx and GSH Antioxidant Systems in Leukemia Cells.
Jasek-Gajda E, Jurkowska H, Jasińska M, Lis GJ. Jasek-Gajda E, et al. Antioxidants (Basel). 2020 Jul 17;9(7):633. doi: 10.3390/antiox9070633. Antioxidants (Basel). 2020. PMID: 32709140 Free PMC article. - Role of Thioredoxin-Interacting Protein in Diseases and Its Therapeutic Outlook.
Qayyum N, Haseeb M, Kim MS, Choi S. Qayyum N, et al. Int J Mol Sci. 2021 Mar 9;22(5):2754. doi: 10.3390/ijms22052754. Int J Mol Sci. 2021. PMID: 33803178 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials