Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans - PubMed (original) (raw)
. 2013 Sep 26;122(13):2205-12.
doi: 10.1182/blood-2013-03-488411. Epub 2013 Aug 14.
Julia Drylewicz, Ineke den Braber, Tendai Mugwagwa, Iris van der Maas, Lydia Kwast, Thomas Volman, Elise H R van de Weg-Schrijver, István Bartha, Gerrit Spierenburg, Koos Gaiser, Mariëtte T Ackermans, Becca Asquith, Rob J de Boer, Kiki Tesselaar, José A M Borghans
Affiliations
- PMID: 23945154
- DOI: 10.1182/blood-2013-03-488411
Free article
Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans
Liset Westera et al. Blood. 2013.
Free article
Abstract
Quantitative knowledge of the turnover of different leukocyte populations is a key to our understanding of immune function in health and disease. Much progress has been made thanks to the introduction of stable isotope labeling, the state-of-the-art technique for in vivo quantification of cellular life spans. Yet, even leukocyte life span estimates on the basis of stable isotope labeling can vary up to 10-fold among laboratories. We investigated whether these differences could be the result of variances in the length of the labeling period among studies. To this end, we performed deuterated water-labeling experiments in mice, in which only the length of label administration was varied. The resulting life span estimates were indeed dependent on the length of the labeling period when the data were analyzed using a commonly used single-exponential model. We show that multiexponential models provide the necessary tool to obtain life span estimates that are independent of the length of the labeling period. Use of a multiexponential model enabled us to reduce the gap between human T-cell life span estimates from 2 previously published labeling studies. This provides an important step toward unambiguous understanding of leukocyte turnover in health and disease.
Similar articles
- Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments.
Ahmed R, Westera L, Drylewicz J, Elemans M, Zhang Y, Kelly E, Reljic R, Tesselaar K, de Boer RJ, Macallan DC, Borghans JA, Asquith B. Ahmed R, et al. PLoS Comput Biol. 2015 Oct 5;11(10):e1004355. doi: 10.1371/journal.pcbi.1004355. eCollection 2015 Oct. PLoS Comput Biol. 2015. PMID: 26437372 Free PMC article. - Current best estimates for the average lifespans of mouse and human leukocytes: reviewing two decades of deuterium-labeling experiments.
Borghans JAM, Tesselaar K, de Boer RJ. Borghans JAM, et al. Immunol Rev. 2018 Sep;285(1):233-248. doi: 10.1111/imr.12693. Immunol Rev. 2018. PMID: 30129193 Review. - Explicit kinetic heterogeneity: mathematical models for interpretation of deuterium labeling of heterogeneous cell populations.
Ganusov VV, Borghans JA, De Boer RJ. Ganusov VV, et al. PLoS Comput Biol. 2010 Feb 5;6(2):e1000666. doi: 10.1371/journal.pcbi.1000666. PLoS Comput Biol. 2010. PMID: 20140186 Free PMC article. - Measurement of protein turnover rates by heavy water labeling of nonessential amino acids.
Busch R, Kim YK, Neese RA, Schade-Serin V, Collins M, Awada M, Gardner JL, Beysen C, Marino ME, Misell LM, Hellerstein MK. Busch R, et al. Biochim Biophys Acta. 2006 May;1760(5):730-44. doi: 10.1016/j.bbagen.2005.12.023. Epub 2006 Jan 24. Biochim Biophys Acta. 2006. PMID: 16567052 - Dynamic Proteomics: In Vivo Proteome-Wide Measurement of Protein Kinetics Using Metabolic Labeling.
Holmes WE, Angel TE, Li KW, Hellerstein MK. Holmes WE, et al. Methods Enzymol. 2015;561:219-76. doi: 10.1016/bs.mie.2015.05.018. Epub 2015 Jul 17. Methods Enzymol. 2015. PMID: 26358907 Review.
Cited by
- Clonal dynamics after allogeneic haematopoietic cell transplantation.
Spencer Chapman M, Wilk CM, Boettcher S, Mitchell E, Dawson K, Williams N, Müller J, Kovtonyuk L, Jung H, Caiado F, Roberts K, O'Neill L, Kent DG, Green AR, Nangalia J, Manz MG, Campbell PJ. Spencer Chapman M, et al. Nature. 2024 Oct 30. doi: 10.1038/s41586-024-08128-y. Online ahead of print. Nature. 2024. PMID: 39478227 - Improving Reliability of Immunological Assays by Defining Minimal Criteria for Cell Fitness.
Ivison S, Boucher G, Zheng G, Garcia RV, Kohen R, Bitton A, Rioux JD, Levings MK; iGenoMed Consortium. Ivison S, et al. Immunohorizons. 2024 Sep 1;8(9):622-634. doi: 10.4049/immunohorizons.2300095. Immunohorizons. 2024. PMID: 39248805 Free PMC article. - The dynamics and longevity of circulating CD4+ memory T cells depend on cell age and not the chronological age of the host.
Bullock ME, Hogan T, Williams C, Morris S, Nowicka M, Sharjeel M, van Dorp C, Yates AJ, Seddon B. Bullock ME, et al. PLoS Biol. 2024 Aug 13;22(8):e3002380. doi: 10.1371/journal.pbio.3002380. eCollection 2024 Aug. PLoS Biol. 2024. PMID: 39137219 Free PMC article. - Stochastic journeys of cell progenies through compartments and the role of self-renewal, symmetric and asymmetric division.
Dreiwi H, Feliciangeli F, Castro M, Lythe G, Molina-París C, López-García M. Dreiwi H, et al. Sci Rep. 2024 Jul 15;14(1):16287. doi: 10.1038/s41598-024-63500-2. Sci Rep. 2024. PMID: 39009631 Free PMC article. - The dynamics and longevity of circulating CD4+ memory T cells depend on cell age and not the chronological age of the host.
Bullock ME, Hogan T, Williams C, Morris S, Nowicka M, Sharjeel M, van Dorp C, Yates AJ, Seddon B. Bullock ME, et al. bioRxiv [Preprint]. 2024 Jun 25:2023.10.16.562650. doi: 10.1101/2023.10.16.562650. bioRxiv. 2024. PMID: 38948729 Free PMC article. Updated. Preprint.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous