Automatic detection of drowsiness in EEG records based on multimodal analysis - PubMed (original) (raw)
Automatic detection of drowsiness in EEG records based on multimodal analysis
Agustina Garcés Correa et al. Med Eng Phys. 2014 Feb.
Abstract
Drowsiness is one of the main causal factors in many traffic accidents due to the clear decline in the attention and recognition of danger drivers, diminishing vehicle-handling abilities. The aim of this research is to develop an automatic method to detect the drowsiness stage in EEG records using time, spectral and wavelet analysis. A total of 19 features were computed from only one EEG channel to differentiate the alertness and drowsiness stages. After a selection process based on lambda of Wilks criterion, 7 parameters were chosen to feed a Neural Network classifier. Eighteen EEG records were analyzed. The method gets 87.4% and 83.6% of alertness and drowsiness correct detections rates, respectively. The results obtained indicate that the parameters can differentiate both stages. The features are easy to calculate and can be obtained in real time. Those variables could be used in an automatic drowsiness detection system in vehicles, thereby decreasing the rate of accidents caused by sleepiness of the driver.
Keywords: Alert; Drowsiness; EEG; Neural networks; Wavelet.
Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Similar articles
- An automatic detector of drowsiness based on spectral analysis and wavelet decomposition of EEG records.
Garces Correa A, Laciar Leber E. Garces Correa A, et al. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1405-8. doi: 10.1109/IEMBS.2010.5626721. Annu Int Conf IEEE Eng Med Biol Soc. 2010. PMID: 21096343 - Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal.
B VP, Chinara S. B VP, et al. J Neurosci Methods. 2021 Jan 1;347:108927. doi: 10.1016/j.jneumeth.2020.108927. Epub 2020 Sep 14. J Neurosci Methods. 2021. PMID: 32941920 - A portable device for real time drowsiness detection using novel active dry electrode system.
Tsai PY, Hu W, Kuo TB, Shyu LY. Tsai PY, et al. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3775-8. doi: 10.1109/IEMBS.2009.5334491. Annu Int Conf IEEE Eng Med Biol Soc. 2009. PMID: 19964814 - Drowsiness measures for commercial motor vehicle operations.
Sparrow AR, LaJambe CM, Van Dongen HPA. Sparrow AR, et al. Accid Anal Prev. 2019 May;126:146-159. doi: 10.1016/j.aap.2018.04.020. Epub 2018 Apr 26. Accid Anal Prev. 2019. PMID: 29704947 Review. - [Review of driver fatigue/drowsiness detection methods].
Wang L, Wu X, Yu M. Wang L, et al. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007 Feb;24(1):245-8. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007. PMID: 17333932 Review. Chinese.
Cited by
- Efficient Sleep Stage Identification Using Piecewise Linear EEG Signal Reduction: A Novel Algorithm for Sleep Disorder Diagnosis.
Paul Y, Singh R, Sharma S, Singh S, Ra IH. Paul Y, et al. Sensors (Basel). 2024 Aug 14;24(16):5265. doi: 10.3390/s24165265. Sensors (Basel). 2024. PMID: 39204960 Free PMC article. - An Efficient Approach for Driver Drowsiness Detection at Moderate Drowsiness Level Based on Electroencephalography Signal and Vehicle Dynamics Data.
Houshmand S, Kazemi R, Salmanzadeh H. Houshmand S, et al. J Med Signals Sens. 2022 Nov 10;12(4):294-305. doi: 10.4103/jmss.jmss_124_21. eCollection 2022 Oct-Dec. J Med Signals Sens. 2022. PMID: 36726417 Free PMC article. - Drowsiness Detection Using Ocular Indices from EEG Signal.
Tarafder S, Badruddin N, Yahya N, Nasution AH. Tarafder S, et al. Sensors (Basel). 2022 Jun 24;22(13):4764. doi: 10.3390/s22134764. Sensors (Basel). 2022. PMID: 35808261 Free PMC article. - A comprehensive review of approaches to detect fatigue using machine learning techniques.
Hooda R, Joshi V, Shah M. Hooda R, et al. Chronic Dis Transl Med. 2022 Feb 24;8(1):26-35. doi: 10.1016/j.cdtm.2021.07.002. eCollection 2022 Mar. Chronic Dis Transl Med. 2022. PMID: 35620159 Free PMC article. Review. - Electroencephalogram-Based Approaches for Driver Drowsiness Detection and Management: A Review.
Li G, Chung WY. Li G, et al. Sensors (Basel). 2022 Jan 31;22(3):1100. doi: 10.3390/s22031100. Sensors (Basel). 2022. PMID: 35161844 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources