Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis - PubMed (original) (raw)
Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis
Chris Gardiner et al. J Extracell Vesicles. 2013.
Abstract
Nanoparticle tracking analysis (NTA) is a light-scattering technique that is useful for the rapid sizing and enumeration of extracellular vesicles (EVs). As a relatively new method, NTA has been criticised for a lack of standardisation. We propose the use of silica microspheres for the calibration of NTA measurements and describe in detail a protocol for the analysis of EVs by NTA which should minimise many of the sources of variability and imprecision associated with this technique.
Keywords: extracellular vesicles; light scattering; nanoparticle tracking analysis; standardisation.
Figures
Fig. 1
Onscreen images showing (A) the correct position of the “thumbprint” at the zero position; (B) overexposed particles due to inappropriately high camera settings; (C) a correctly focussed image of an appropriate concentration of particles; poorly focussed particles due to the stage being (D) too low or (E) too high; and a sample that is too concentrated for analysis.
Fig. 2
(A) The effect of minimum track length (MTL) on measured size distribution of monodisperse 100 nm silica microspheres; (B) the effect of using automatic (Auto) or manual (MTL5) minimum track length on measurement of a low concentration of polydisperse EVs; (C) the effect of increasing camera level (level 3 to level 7) on the measurement of a mixture of 100 nm and 200 nm microspheres (concentration 10×108/ml and 0.5×108/ml, respectively); and (D) NTA analysis of plasma EVs labelled with CellMask using light scattering (Scatter) and fluorescence (Fluor) measurement.
Similar articles
- Enumeration of extracellular vesicles by a new improved flow cytometric method is comparable to fluorescence mode nanoparticle tracking analysis.
Pasalic L, Williams R, Siupa A, Campbell H, Henderson MJ, Chen VMY. Pasalic L, et al. Nanomedicine. 2016 May;12(4):977-986. doi: 10.1016/j.nano.2015.12.370. Epub 2016 Jan 6. Nanomedicine. 2016. PMID: 26767510 - Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles.
Gardiner C, Shaw M, Hole P, Smith J, Tannetta D, Redman CW, Sargent IL. Gardiner C, et al. J Extracell Vesicles. 2014 Nov 24;3:25361. doi: 10.3402/jev.v3.25361. eCollection 2014. J Extracell Vesicles. 2014. PMID: 25425324 Free PMC article. - Differential fluorescence nanoparticle tracking analysis for enumeration of the extracellular vesicle content in mixed particulate solutions.
Desgeorges A, Hollerweger J, Lassacher T, Rohde E, Helmbrecht C, Gimona M. Desgeorges A, et al. Methods. 2020 May 1;177:67-73. doi: 10.1016/j.ymeth.2020.02.006. Epub 2020 Feb 17. Methods. 2020. PMID: 32081745 - Analytical challenges of extracellular vesicle detection: A comparison of different techniques.
Erdbrügger U, Lannigan J. Erdbrügger U, et al. Cytometry A. 2016 Feb;89(2):123-34. doi: 10.1002/cyto.a.22795. Epub 2015 Dec 9. Cytometry A. 2016. PMID: 26651033 Review. - The Methods of Choice for Extracellular Vesicles (EVs) Characterization.
Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. Szatanek R, et al. Int J Mol Sci. 2017 May 29;18(6):1153. doi: 10.3390/ijms18061153. Int J Mol Sci. 2017. PMID: 28555055 Free PMC article. Review.
Cited by
- Current status and future perspectives of platelet-derived extracellular vesicles in cancer diagnosis and treatment.
Zhuang T, Wang S, Yu X, He X, Guo H, Ou C. Zhuang T, et al. Biomark Res. 2024 Aug 26;12(1):88. doi: 10.1186/s40364-024-00639-0. Biomark Res. 2024. PMID: 39183323 Free PMC article. Review. - Graft-derived extracellular vesicles transported across subcapsular sinus macrophages elicit B cell alloimmunity after transplantation.
Zeng F, Chen Z, Chen R, Shufesky WJ, Bandyopadhyay M, Camirand G, Oberbarnscheidt MH, Sullivan MLG, Baty CJ, Yang MQ, Calderon M, Stolz DB, Erdos G, Pelanda R, Brennan TV, Catz SD, Watkins SC, Larregina AT, Morelli AE. Zeng F, et al. Sci Transl Med. 2021 Mar 17;13(585):eabb0122. doi: 10.1126/scitranslmed.abb0122. Sci Transl Med. 2021. PMID: 33731430 Free PMC article. - Isolation of Small Extracellular Vesicles from Human Sera.
Małys MSS, Aigner C, Schulz SMM, Schachner H, Rees AJJ, Kain R. Małys MSS, et al. Int J Mol Sci. 2021 Apr 28;22(9):4653. doi: 10.3390/ijms22094653. Int J Mol Sci. 2021. PMID: 33925027 Free PMC article. - Extracellular vesicle-associated microRNA-30b-5p activates macrophages through the SIRT1/ NF-κB pathway in cell senescence.
Xiao Y, Liang J, Witwer KW, Zhang Y, Wang Q, Yin H. Xiao Y, et al. Front Immunol. 2022 Aug 31;13:955175. doi: 10.3389/fimmu.2022.955175. eCollection 2022. Front Immunol. 2022. PMID: 36119099 Free PMC article. - Evaluation of the effectiveness of the use of exosomes in the regulation of the mitochondrial membrane potential of frozen/thawed spermatozoa.
Kowalczyk A, Kordan W. Kowalczyk A, et al. PLoS One. 2024 Jul 3;19(7):e0303479. doi: 10.1371/journal.pone.0303479. eCollection 2024. PLoS One. 2024. PMID: 38959270 Free PMC article.
References
- Saveyn H, De BB, Thas O, Hole P, Smith J, Van der Meeren P. Accurate particle size distribution determination by nanoparticle tracking analysis based on 2-D Brownian dynamics simulation. J Colloid Interface Sci. 2010;352:593–600. - PubMed
- Van der Meeren P, Kasinos M, Saveyn H. Relevance of two-dimensional Brownian motion dynamics in applying nanoparticle tracking analysis. Methods Mol Biol. 2012;906:525–34. - PubMed
- Carr R, Hole P, Malloy A, Nelson P, Smith J. Applications of nanoparticle tracking analysis (NTA) in nanoparticle research – a mini-review. Eur J Parent Pharmaceut Sci. 2009;14:45–50.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials