A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles - PubMed (original) (raw)
A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles
M Gulrez Zariwala et al. Int J Pharm. 2013.
Abstract
Iron (Fe) loaded solid lipid nanoparticles (SLN's) were formulated using stearic acid and iron absorption was evaluated in vitro using the cell line Caco-2 with intracellular ferritin formation as a marker of iron absorption. Iron loading was optimised at 1% Fe (w/w) lipid since an inverse relation was observed between initial iron concentration and SLN iron incorporation efficiency. Chitosan (Chi) was included to prepare chitosan coated SLN's. Particle size analysis revealed a sub-micron size range (300.3±31.75 nm to 495.1±80.42 nm), with chitosan containing particles having the largest dimensions. As expected, chitosan (0.1%, 0.2% and 0.4% w/v) conferred a net positive charge on the particle surface in a concentration dependent manner. For iron absorption experiments equal doses of Fe (20 μM) from selected formulations (SLN-FeA and SLN-Fe-ChiB) were added to Caco-2 cells and intracellular ferritin protein concentrations determined. Caco-2 iron absorption from SLN-FeA (583.98±40.83 ng/mg cell protein) and chitosan containing SLN-Fe-ChiB (642.77±29.37 ng/mg cell protein) were 13.42% and 24.9% greater than that from ferrous sulphate (FeSO4) reference (514.66±20.43 ng/mg cell protein) (p≤0.05). We demonstrate for the first time preparation, characterisation and superior iron absorption in vitro from SLN's, suggesting the potential of these formulations as a novel system for oral iron delivery.
Keywords: Caco-2; Chitosan; Ferritin; Ferrous sulfate; Iron supplementation; Solid lipid nanoparticles.
Copyright © 2013 Elsevier B.V. All rights reserved.
Similar articles
- Ascorbyl palmitate/DSPE-PEG nanocarriers for oral iron delivery: preparation, characterisation and in vitro evaluation.
Zariwala MG, Farnaud S, Merchant Z, Somavarapu S, Renshaw D. Zariwala MG, et al. Colloids Surf B Biointerfaces. 2014 Mar 1;115:86-92. doi: 10.1016/j.colsurfb.2013.11.028. Epub 2013 Nov 23. Colloids Surf B Biointerfaces. 2014. PMID: 24333557 - Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles.
Silva AC, Kumar A, Wild W, Ferreira D, Santos D, Forbes B. Silva AC, et al. Int J Pharm. 2012 Oct 15;436(1-2):798-805. doi: 10.1016/j.ijpharm.2012.07.058. Epub 2012 Aug 4. Int J Pharm. 2012. PMID: 22867992 - Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration.
Venishetty VK, Chede R, Komuravelli R, Adepu L, Sistla R, Diwan PV. Venishetty VK, et al. Colloids Surf B Biointerfaces. 2012 Jun 15;95:1-9. doi: 10.1016/j.colsurfb.2012.01.001. Epub 2012 Feb 14. Colloids Surf B Biointerfaces. 2012. PMID: 22463845 - Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations.
Kathe N, Henriksen B, Chauhan H. Kathe N, et al. Drug Dev Ind Pharm. 2014 Dec;40(12):1565-75. doi: 10.3109/03639045.2014.909840. Epub 2014 Apr 25. Drug Dev Ind Pharm. 2014. PMID: 24766553 Review. - Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases.
Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK. Ganesan P, et al. Int J Nanomedicine. 2018 Mar 15;13:1569-1583. doi: 10.2147/IJN.S155593. eCollection 2018. Int J Nanomedicine. 2018. PMID: 29588585 Free PMC article. Review.
Cited by
- Preparation of Solid Lipid Nanoparticle-Ferrous Sulfate by Double Emulsion Method Based on Fat Rich in Monolaurin and Stearic Acid.
Subroto E, Andoyo R, Indiarto R, Wulandari E, Wadhiah EFN. Subroto E, et al. Nanomaterials (Basel). 2022 Sep 2;12(17):3054. doi: 10.3390/nano12173054. Nanomaterials (Basel). 2022. PMID: 36080090 Free PMC article. - Different Microfluidic Environments for In Vitro Testing of Lipid Nanoparticles against Osteosarcoma.
Mitxelena-Iribarren O, Lizarbe-Sancha S, Campisi J, Arana S, Mujika M. Mitxelena-Iribarren O, et al. Bioengineering (Basel). 2021 Jun 4;8(6):77. doi: 10.3390/bioengineering8060077. Bioengineering (Basel). 2021. PMID: 34199965 Free PMC article. - Hydrophobically modified chitosan nanoliposomes for intestinal drug delivery.
Zariwala MG, Bendre H, Markiv A, Farnaud S, Renshaw D, Taylor KM, Somavarapu S. Zariwala MG, et al. Int J Nanomedicine. 2018 Sep 27;13:5837-5848. doi: 10.2147/IJN.S166901. eCollection 2018. Int J Nanomedicine. 2018. PMID: 30310283 Free PMC article. - Advances in Nanoliposomes Production for Ferrous Sulfate Delivery.
Bochicchio S, Dalmoro A, Lamberti G, Barba AA. Bochicchio S, et al. Pharmaceutics. 2020 May 11;12(5):445. doi: 10.3390/pharmaceutics12050445. Pharmaceutics. 2020. PMID: 32403375 Free PMC article. - Co-Administration of Iron and a Bioavailable Curcumin Supplement Increases Serum BDNF Levels in Healthy Adults.
Tiekou Lorinczova H, Fitzsimons O, Mursaleen L, Renshaw D, Begum G, Zariwala MG. Tiekou Lorinczova H, et al. Antioxidants (Basel). 2020 Jul 22;9(8):645. doi: 10.3390/antiox9080645. Antioxidants (Basel). 2020. PMID: 32707771 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials