FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation - PubMed (original) (raw)

Comparative Study

. 2013 Sep-Oct;33(5):1279-303.

doi: 10.1148/rg.335125152.

Affiliations

Comparative Study

FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation

Luana Stanescu et al. Radiographics. 2013 Sep-Oct.

Abstract

Positron emission tomography (PET) of the brain is an important problem-solving tool in pediatric neuroimaging, neurology, and neurosurgery. Fluorine 18 fluorodeoxyglucose (FDG) PET or dual-modality PET and computed tomographic (CT) imaging (PET/CT), with magnetic resonance (MR) imaging correlation, can be used to evaluate childhood epilepsy and pediatric brain tumors, areas in which PET adds value in patient management. FDG PET has been widely used in pediatric temporal lobe epilepsy, most commonly manifesting as mesial temporal sclerosis, which demonstrates hypometabolism at interictal PET and hypermetabolism during seizures. Recently, FDG PET has shown added value for patients with extratemporal epilepsy, in whom FDG PET can help identify cortical foci of interictal hypometabolism that are undetectable or difficult to detect with MR imaging. These findings can then guide additional investigations and surgery. FDG PET also enhances medical decision making in children with brain tumors, in whom FDG PET can be used to (a) improve the diagnostic yield of stereotactic biopsies by detecting metabolically active areas of tumor, (b) help guide the surgeon in achieving total tumor resection, and (c) increase detection of residual or recurrent tumor. Technologic advances in the past decade have allowed fusion of PET and MR images, combining the high resolution of MR imaging with the low-resolution functional capability of PET. As dual-modality integrated PET/MR imaging systems become available, CT coregistration for PET can be eliminated, thus reducing patient radiation exposure. Increasing familiarity with normal and abnormal appearances of FDG PET brain images correlated with MR images can enhance diagnostic yield and improve the care of children with epilepsy and brain tumors.

© RSNA, 2013.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources