Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites - PubMed (original) (raw)
Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites
G M Santangelo et al. Mol Cell Biol. 1990 Feb.
Abstract
Glycolytic gene expression in Saccharomyces cerevisiae is thought to be activated by the GCR and TUF proteins. We tested the hypothesis that GCR function is mediated by TUF/GRF/RAP binding sites (UASRPG elements). We found that UASRPG-dependent activation of a heterologous gene and transcription of ADH1, TEF1, TEF2, and RP59 were sensitive to GCR1 disruption. GCR is not required for TUF/GRF/RAP expression or in vitro DNA-binding activity.
Similar articles
- GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain.
Tornow J, Zeng X, Gao W, Santangelo GM. Tornow J, et al. EMBO J. 1993 Jun;12(6):2431-7. doi: 10.1002/j.1460-2075.1993.tb05897.x. EMBO J. 1993. PMID: 8508768 Free PMC article. - Characterization of the DNA-binding activity of GCR1: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae.
Huie MA, Scott EW, Drazinic CM, Lopez MC, Hornstra IK, Yang TP, Baker HV. Huie MA, et al. Mol Cell Biol. 1992 Jun;12(6):2690-700. doi: 10.1128/mcb.12.6.2690-2700.1992. Mol Cell Biol. 1992. PMID: 1588965 Free PMC article. - Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae).
Chambers A, Packham EA, Graham IR. Chambers A, et al. Curr Genet. 1995 Dec;29(1):1-9. doi: 10.1007/BF00313187. Curr Genet. 1995. PMID: 8595651 Review. No abstract available. - The phosphatase system in Saccharomyces cerevisiae.
Oshima Y. Oshima Y. Genes Genet Syst. 1997 Dec;72(6):323-34. doi: 10.1266/ggs.72.323. Genes Genet Syst. 1997. PMID: 9544531 Review.
Cited by
- Fungal Alcohol Dehydrogenases: Physiological Function, Molecular Properties, Regulation of Their Production, and Biotechnological Potential.
Gutiérrez-Corona JF, González-Hernández GA, Padilla-Guerrero IE, Olmedo-Monfil V, Martínez-Rocha AL, Patiño-Medina JA, Meza-Carmen V, Torres-Guzmán JC. Gutiérrez-Corona JF, et al. Cells. 2023 Sep 8;12(18):2239. doi: 10.3390/cells12182239. Cells. 2023. PMID: 37759461 Free PMC article. Review. - Differential activation mechanisms of two isoforms of Gcr1 transcription factor generated from spliced and un-spliced transcripts in Saccharomyces cerevisiae.
Cha S, Hong CP, Kang HA, Hahn JS. Cha S, et al. Nucleic Acids Res. 2021 Jan 25;49(2):745-759. doi: 10.1093/nar/gkaa1221. Nucleic Acids Res. 2021. PMID: 33367825 Free PMC article. - A fast and tuneable auxin-inducible degron for depletion of target proteins in budding yeast.
Mendoza-Ochoa GI, Barrass JD, Terlouw BR, Maudlin IE, de Lucas S, Sani E, Aslanzadeh V, Reid JAE, Beggs JD. Mendoza-Ochoa GI, et al. Yeast. 2019 Jan;36(1):75-81. doi: 10.1002/yea.3362. Epub 2018 Nov 12. Yeast. 2019. PMID: 30375036 Free PMC article. - Integrative random forest for gene regulatory network inference.
Petralia F, Wang P, Yang J, Tu Z. Petralia F, et al. Bioinformatics. 2015 Jun 15;31(12):i197-205. doi: 10.1093/bioinformatics/btv268. Bioinformatics. 2015. PMID: 26072483 Free PMC article. - Coiled coil structures and transcription: an analysis of the S. cerevisiae coilome.
Barbara KE, Willis KA, Haley TM, Deminoff SJ, Santangelo GM. Barbara KE, et al. Mol Genet Genomics. 2007 Aug;278(2):135-47. doi: 10.1007/s00438-007-0237-x. Epub 2007 May 3. Mol Genet Genomics. 2007. PMID: 17476531
References
- Mol Cell Biol. 1986 Nov;6(11):3774-84 - PubMed
- J Biol Chem. 1981 Dec 25;256(24):13074-8 - PubMed
- Mol Cell Biol. 1987 Feb;7(2):813-20 - PubMed
- Proc Natl Acad Sci U S A. 1987 Jun;84(11):3648-52 - PubMed
- Mol Cell Biol. 1987 May;7(5):1764-75 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases