Cellular immune correlates of protection against symptomatic pandemic influenza - PubMed (original) (raw)
. 2013 Oct;19(10):1305-12.
doi: 10.1038/nm.3350. Epub 2013 Sep 22.
Affiliations
- PMID: 24056771
- DOI: 10.1038/nm.3350
Cellular immune correlates of protection against symptomatic pandemic influenza
Saranya Sridhar et al. Nat Med. 2013 Oct.
Abstract
The role of T cells in mediating heterosubtypic protection against natural influenza illness in humans is uncertain. The 2009 H1N1 pandemic (pH1N1) provided a unique natural experiment to determine whether crossreactive cellular immunity limits symptomatic illness in antibody-naive individuals. We followed 342 healthy adults through the UK pandemic waves and correlated the responses of pre-existing T cells to the pH1N1 virus and conserved core protein epitopes with clinical outcomes after incident pH1N1 infection. Higher frequencies of pre-existing T cells to conserved CD8 epitopes were found in individuals who developed less severe illness, with total symptom score having the strongest inverse correlation with the frequency of interferon-γ (IFN-γ)(+) interleukin-2 (IL-2)(-) CD8(+) T cells (r = -0.6, P = 0.004). Within this functional CD8(+)IFN-γ(+)IL-2(-) population, cells with the CD45RA(+) chemokine (C-C) receptor 7 (CCR7)(-) phenotype inversely correlated with symptom score and had lung-homing and cytotoxic potential. In the absence of crossreactive neutralizing antibodies, CD8(+) T cells specific to conserved viral epitopes correlated with crossprotection against symptomatic influenza. This protective immune correlate could guide universal influenza vaccine development.
Similar articles
- Predominance of heterosubtypic IFN-γ-only-secreting effector memory T cells in pandemic H1N1 naive adults.
Sridhar S, Begom S, Bermingham A, Ziegler T, Roberts KL, Barclay WS, Openshaw P, Lalvani A. Sridhar S, et al. Eur J Immunol. 2012 Nov;42(11):2913-24. doi: 10.1002/eji.201242504. Epub 2012 Aug 15. Eur J Immunol. 2012. PMID: 22777887 Free PMC article. - Humoral and cell-mediated immunity to pandemic H1N1 influenza in a Canadian cohort one year post-pandemic: implications for vaccination.
Wagar LE, Rosella L, Crowcroft N, Lowcock B, Drohomyrecky PC, Foisy J, Gubbay J, Rebbapragada A, Winter AL, Achonu C, Ward BJ, Watts TH. Wagar LE, et al. PLoS One. 2011;6(11):e28063. doi: 10.1371/journal.pone.0028063. Epub 2011 Nov 23. PLoS One. 2011. PMID: 22132212 Free PMC article. - Distinct T and NK cell populations may serve as immune correlates of protection against symptomatic pandemic influenza A(H1N1) virus infection during pregnancy.
Savic M, Dembinski JL, Laake I, Hungnes O, Cox R, Oftung F, Trogstad L, Mjaaland S. Savic M, et al. PLoS One. 2017 Nov 16;12(11):e0188055. doi: 10.1371/journal.pone.0188055. eCollection 2017. PLoS One. 2017. PMID: 29145441 Free PMC article. - Recalling the Future: Immunological Memory Toward Unpredictable Influenza Viruses.
Auladell M, Jia X, Hensen L, Chua B, Fox A, Nguyen THO, Doherty PC, Kedzierska K. Auladell M, et al. Front Immunol. 2019 Jul 2;10:1400. doi: 10.3389/fimmu.2019.01400. eCollection 2019. Front Immunol. 2019. PMID: 31312199 Free PMC article. Review. - Human influenza viruses and CD8(+) T cell responses.
Grant EJ, Quiñones-Parra SM, Clemens EB, Kedzierska K. Grant EJ, et al. Curr Opin Virol. 2016 Feb;16:132-142. doi: 10.1016/j.coviro.2016.01.016. Epub 2016 Mar 12. Curr Opin Virol. 2016. PMID: 26974887 Review.
Cited by
- Molecular basis for universal HLA-A*0201-restricted CD8+ T-cell immunity against influenza viruses.
Valkenburg SA, Josephs TM, Clemens EB, Grant EJ, Nguyen TH, Wang GC, Price DA, Miller A, Tong SY, Thomas PG, Doherty PC, Rossjohn J, Gras S, Kedzierska K. Valkenburg SA, et al. Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4440-5. doi: 10.1073/pnas.1603106113. Epub 2016 Mar 31. Proc Natl Acad Sci U S A. 2016. PMID: 27036003 Free PMC article. Clinical Trial. - Aerosol Delivery of a Candidate Universal Influenza Vaccine Reduces Viral Load in Pigs Challenged with Pandemic H1N1 Virus.
Morgan SB, Hemmink JD, Porter E, Harley R, Shelton H, Aramouni M, Everett HE, Brookes SM, Bailey M, Townsend AM, Charleston B, Tchilian E. Morgan SB, et al. J Immunol. 2016 Jun 15;196(12):5014-23. doi: 10.4049/jimmunol.1502632. Epub 2016 May 6. J Immunol. 2016. PMID: 27183611 Free PMC article. - The frequency and function of nucleoprotein-specific CD8+ T cells are critical for heterosubtypic immunity against influenza virus infection.
Amoah S, Cao W, Sayedahmed EE, Wang Y, Kumar A, Mishina M, Eddins DJ, Wang W-C, Burroughs M, Sheth M, Lee J, Shieh W-J, Ray SD, Bohannon CD, Ranjan P, Sharma SD, Hoehner J, Arthur RA, Gangappa S, Wakamatsu N, Johnston HR, Pohl J, Mittal SK, Sambhara S. Amoah S, et al. J Virol. 2024 Aug 20;98(8):e0071124. doi: 10.1128/jvi.00711-24. Epub 2024 Jul 31. J Virol. 2024. PMID: 39082839 Free PMC article. - DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8(+) T Cell Responses, Enabling Faster Resolution of Influenza Disease.
Lambert L, Kinnear E, McDonald JU, Grodeland G, Bogen B, Stubsrud E, Lindeberg MM, Fredriksen AB, Tregoning JS. Lambert L, et al. Front Immunol. 2016 Aug 23;7:321. doi: 10.3389/fimmu.2016.00321. eCollection 2016. Front Immunol. 2016. PMID: 27602032 Free PMC article. - Mucosal Immunization with a pH-Responsive Nanoparticle Vaccine Induces Protective CD8+ Lung-Resident Memory T Cells.
Knight FC, Gilchuk P, Kumar A, Becker KW, Sevimli S, Jacobson ME, Suryadevara N, Wang-Bishop L, Boyd KL, Crowe JE Jr, Joyce S, Wilson JT. Knight FC, et al. ACS Nano. 2019 Oct 22;13(10):10939-10960. doi: 10.1021/acsnano.9b00326. Epub 2019 Oct 4. ACS Nano. 2019. PMID: 31553872 Free PMC article.
References
- Lancet Infect Dis. 2009 Dec;9(12):784-8 - PubMed
- J Exp Med. 2005 Nov 21;202(10):1433-42 - PubMed
- J Exp Med. 2011 Jan 17;208(1):181-93 - PubMed
- Bull World Health Organ. 1959;20(2-3):297-301 - PubMed
- Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20365-70 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials