Through the dark continent: African trypanosome development in the tsetse fly - PubMed (original) (raw)
Review
Through the dark continent: African trypanosome development in the tsetse fly
Brice Rotureau et al. Front Cell Infect Microbiol. 2013.
Abstract
African trypanosomes are unicellular flagellated parasites causing trypanosomiases in Africa, a group of severe diseases also known as sleeping sickness in human and nagana in cattle. These parasites are almost exclusively transmitted by the bite of the tsetse fly. In this review, we describe and compare the three developmental programs of the main trypanosome species impacting human and animal health, with focus on the most recent observations. From here, some reflections are made on research issues concerning trypanosome developmental biology in the tsetse fly that are to be addressed in the future.
Keywords: African trypanosomes; development; parasite cycle; tsetse fly; vector.
Figures
Figure 1
The three types of African trypanosome development in the tsetse fly. (A) T. vivax group. (B) T. congolense group. (C) T. brucei group. Parasite paths in the tsetse digestive tract are schematically presented in the left panel [adapted from (Hoare, 1972)]. Successive parasite stages found in the different organs are presented in a chronological order in the right panel [adapted from (Hoare, ; Peacock et al., , ; Rotureau et al., 2012)]. * indicate proliferating stages and ? indicate an uncertainty with respect to the type of division and/or the transitional forms involved at this stage of development. Pr: proboscis, FG: foregut, Pv: proventriculus, PM: peritrophic matrix, MG: midgut, HG: hindgut, R: rectum, Hx: hypopharynx, SG: salivary glands, SL: slender trypomastigote, ST: stumpy trypomastigote, PC: procyclic trypomastigote, MS: mesocyclic trypomastigote, DE: long dividing epimastigote, SE: short epimastigote, AE: attached epimastigote, ET: epi-trypo dividing epimastigote, pMT: pre-metacyclic trypomastigote, MT: metacyclic trypomastigote.
Similar articles
- Diversity of tsetse flies and trypanosome species circulating in the area of Lake Iro in southeastern Chad.
Signaboubo D, Payne VK, Moussa IMA, Hassane HM, Berger P, Kelm S, Simo G. Signaboubo D, et al. Parasit Vectors. 2021 Jun 2;14(1):293. doi: 10.1186/s13071-021-04782-7. Parasit Vectors. 2021. PMID: 34078431 Free PMC article. - Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies.
Dean S. Dean S. Curr Pharm Des. 2021;27(14):1650-1670. doi: 10.2174/1381612827666210119105008. Curr Pharm Des. 2021. PMID: 33463458 - Oxidative Phosphorylation Is Required for Powering Motility and Development of the Sleeping Sickness Parasite Trypanosoma brucei in the Tsetse Fly Vector.
Dewar CE, Casas-Sanchez A, Dieme C, Crouzols A, Haines LR, Acosta-Serrano Á, Rotureau B, Schnaufer A. Dewar CE, et al. mBio. 2022 Feb 22;13(1):e0235721. doi: 10.1128/mbio.02357-21. Epub 2022 Jan 11. mBio. 2022. PMID: 35012336 Free PMC article. - Interactions between trypanosomes and tsetse flies.
Roditi I, Lehane MJ. Roditi I, et al. Curr Opin Microbiol. 2008 Aug;11(4):345-51. doi: 10.1016/j.mib.2008.06.006. Epub 2008 Jul 30. Curr Opin Microbiol. 2008. PMID: 18621142 Review. - Glossina spp. gut bacterial flora and their putative role in fly-hosted trypanosome development.
Geiger A, Fardeau ML, Njiokou F, Ollivier B. Geiger A, et al. Front Cell Infect Microbiol. 2013 Jul 24;3:34. doi: 10.3389/fcimb.2013.00034. eCollection 2013. Front Cell Infect Microbiol. 2013. PMID: 23898466 Free PMC article. Review.
Cited by
- A proteomics approach reveals molecular manipulators of distinct cellular processes in the salivary glands of Glossina m. morsitans in response to Trypanosoma b. brucei infections.
Kariithi HM, Boeren S, Murungi EK, Vlak JM, Abd-Alla AM. Kariithi HM, et al. Parasit Vectors. 2016 Aug 2;9(1):424. doi: 10.1186/s13071-016-1714-z. Parasit Vectors. 2016. PMID: 27485005 Free PMC article. - Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria.
Maslov DA. Maslov DA. Pathogens. 2019 Jul 18;8(3):105. doi: 10.3390/pathogens8030105. Pathogens. 2019. PMID: 31323762 Free PMC article. Review. - VEX1 Influences mVSG Expression During the Transition to Mammalian Infectivity in Trypanosoma brucei.
Tihon E, Rubio-Peña K, Dujeancourt-Henry A, Crouzols A, Rotureau B, Glover L. Tihon E, et al. Front Cell Dev Biol. 2022 Apr 5;10:851475. doi: 10.3389/fcell.2022.851475. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 35450294 Free PMC article. - Variable Surface Glycoprotein from Trypanosoma brucei Undergoes Cleavage by Matrix Metalloproteinases: An in silico Approach.
Moreno CJG, Torres T, Silva MS. Moreno CJG, et al. Pathogens. 2019 Oct 8;8(4):178. doi: 10.3390/pathogens8040178. Pathogens. 2019. PMID: 31597256 Free PMC article. - Glycerol supports growth of the Trypanosoma brucei bloodstream forms in the absence of glucose: Analysis of metabolic adaptations on glycerol-rich conditions.
Pineda E, Thonnus M, Mazet M, Mourier A, Cahoreau E, Kulyk H, Dupuy JW, Biran M, Masante C, Allmann S, Rivière L, Rotureau B, Portais JC, Bringaud F. Pineda E, et al. PLoS Pathog. 2018 Nov 1;14(11):e1007412. doi: 10.1371/journal.ppat.1007412. eCollection 2018 Nov. PLoS Pathog. 2018. PMID: 30383867 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources