Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock - PubMed (original) (raw)
Review
Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock
Daniel De Backer et al. Virulence. 2014.
Abstract
Multiple experimental and human trials have shown that microcirculatory alterations are frequent in sepsis. In this review, we discuss the various mechanisms that are potentially involved in their development and the implications of these alterations. Endothelial dysfunction, impaired inter-cell communication, altered glycocalyx, adhesion and rolling of white blood cells and platelets, and altered red blood cell deformability are the main mechanisms involved in the development of these alterations. Microcirculatory alterations increase the diffusion distance for oxygen and, due to the heterogeneity of microcirculatory perfusion in sepsis, may promote development of areas of tissue hypoxia in close vicinity to well-oxygenated zones. The severity of microvascular alterations is associated with organ dysfunction and mortality. At this stage, therapies to specifically target the microcirculation are still being investigated.
Keywords: endothelium; microcirculatory blood flow; organ failure; sepsis; tissue PCO2; tissue PO2; tonometry.
Figures
Figure 1. Sublingual microcirculation in sepsis. Photograph of the sublingual microcirculation in a patient with septic shock using a sidestream dark field (SDF) imaging device. The white arrow shows a perfused capillary, the black arrows identify a stopped flow capillary.
Figure 2. Relationship between sublingual microcirculation and ICU mortality in patients with severe sepsis. In this series of 252 patients with severe sepsis, the sublingual microcirculation was assessed either with an orthogonal polarization spectral (OPS) or a sidestream dark field (SDF) imaging device. The patients were grouped into quartiles of proportion of perfused capillaries. From reference with permission.
Similar articles
- Microcirculatory alterations: potential mechanisms and implications for therapy.
De Backer D, Donadello K, Taccone FS, Ospina-Tascon G, Salgado D, Vincent JL. De Backer D, et al. Ann Intensive Care. 2011 Jul 19;1(1):27. doi: 10.1186/2110-5820-1-27. Ann Intensive Care. 2011. PMID: 21906380 Free PMC article. - Relationship of mottling score, skin microcirculatory perfusion indices and biomarkers of endothelial dysfunction in patients with septic shock: an observational study.
Kazune S, Caica A, Volceka K, Suba O, Rubins U, Grabovskis A. Kazune S, et al. Crit Care. 2019 Sep 11;23(1):311. doi: 10.1186/s13054-019-2589-0. Crit Care. 2019. PMID: 31511042 Free PMC article. - The impact of the glycocalyx on microcirculatory oxygen distribution in critical illness.
Chappell D, Westphal M, Jacob M. Chappell D, et al. Curr Opin Anaesthesiol. 2009 Apr;22(2):155-62. doi: 10.1097/ACO.0b013e328328d1b6. Curr Opin Anaesthesiol. 2009. PMID: 19307890 Review. - Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival.
Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, Arnold RC, Colilla S, Zanotti S, Hollenberg SM; Microcirculatory Alterations in Resuscitation and Shock Investigators. Trzeciak S, et al. Ann Emerg Med. 2007 Jan;49(1):88-98, 98.e1-2. doi: 10.1016/j.annemergmed.2006.08.021. Epub 2006 Nov 7. Ann Emerg Med. 2007. PMID: 17095120 - Sepsis and septic shock-is a microcirculation a main player?
Lipinska-Gediga M. Lipinska-Gediga M. Anaesthesiol Intensive Ther. 2016;48(4):261-265. doi: 10.5603/AIT.a2016.0037. Epub 2016 Sep 23. Anaesthesiol Intensive Ther. 2016. PMID: 27660252 Review.
Cited by
- A longitudinal change of syndecan-1 predicts risk of acute respiratory distress syndrome and cumulative fluid balance in patients with septic shock: a preliminary study.
Kajita Y, Terashima T, Mori H, Islam MM, Irahara T, Tsuda M, Kano H, Takeyama N. Kajita Y, et al. J Intensive Care. 2021 Mar 16;9(1):27. doi: 10.1186/s40560-021-00543-x. J Intensive Care. 2021. PMID: 33726863 Free PMC article. - Splenic retention of Plasmodium falciparum gametocytes to block the transmission of malaria.
Duez J, Holleran JP, Ndour PA, Loganathan S, Amireault P, Français O, El Nemer W, Le Pioufle B, Amado IF, Garcia S, Chartrel N, Le Van Kim C, Lavazec C, Avery VM, Buffet PA. Duez J, et al. Antimicrob Agents Chemother. 2015 Jul;59(7):4206-14. doi: 10.1128/AAC.05030-14. Epub 2015 May 4. Antimicrob Agents Chemother. 2015. PMID: 25941228 Free PMC article. - Effect of High-dose Antithrombin Supplementation in Patients with Septic Shock and Disseminated Intravascular Coagulation.
Kim YJ, Ko BS, Park SY, Oh DK, Hong SB, Jang S, Kim WY. Kim YJ, et al. Sci Rep. 2019 Nov 12;9(1):16626. doi: 10.1038/s41598-019-52968-y. Sci Rep. 2019. PMID: 31719571 Free PMC article. - In Vivo Imaging of the Buccal Mucosa Shows Loss of the Endothelial Glycocalyx and Perivascular Hemorrhages in Pediatric Plasmodium falciparum Malaria.
Lyimo E, Haslund LE, Ramsing T, Wang CW, Efunshile AM, Manjurano A, Makene V, Lusingu J, Theander TG, Kurtzhals JAL, Paulsen R, Hempel C. Lyimo E, et al. Infect Immun. 2020 Feb 20;88(3):e00679-19. doi: 10.1128/IAI.00679-19. Print 2020 Feb 20. Infect Immun. 2020. PMID: 31871101 Free PMC article. - Patterns of renal and splanchnic sympathetic vasomotor activity in an animal model of survival to experimental sepsis.
Milanez MIO, Liberatore AMA, Nishi EE, Bergamaschi CT, Campos RR, Koh IHJ. Milanez MIO, et al. Braz J Med Biol Res. 2022 Jan 14;55:e11873. doi: 10.1590/1414-431X2021e11873. eCollection 2022. Braz J Med Biol Res. 2022. PMID: 35043862 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources