Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release - PubMed (original) (raw)
Comparative Study
Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release
S M Simon et al. Biophys J. 1985 Sep.
Abstract
Quantitative modeling indicates that, in presynaptic terminals, the intracellular calcium concentration profile during inward calcium current is characterized by discrete peaks of calcium immediately adjacent to the calcium channels. This restriction of intracellular calcium concentration suggests a remarkably well specified intracellular architecture such that calcium, as a second messenger, may regulate particular intracellular domains with a great degree of specificity.
Similar articles
- Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation.
Fogelson AL, Zucker RS. Fogelson AL, et al. Biophys J. 1985 Dec;48(6):1003-17. doi: 10.1016/S0006-3495(85)83863-7. Biophys J. 1985. PMID: 2418887 Free PMC article. - Can presynaptic depolarization release transmitter without calcium influx?
Zucker RS, Landò L, Fogelson A. Zucker RS, et al. J Physiol (Paris). 1986;81(4):237-45. J Physiol (Paris). 1986. PMID: 2883310 - Presynaptic calcium diffusion and the time courses of transmitter release and synaptic facilitation at the squid giant synapse.
Zucker RS, Stockbridge N. Zucker RS, et al. J Neurosci. 1983 Jun;3(6):1263-9. doi: 10.1523/JNEUROSCI.03-06-01263.1983. J Neurosci. 1983. PMID: 6133920 Free PMC article. - Calcium action in synaptic transmitter release.
Augustine GJ, Charlton MP, Smith SJ. Augustine GJ, et al. Annu Rev Neurosci. 1987;10:633-93. doi: 10.1146/annurev.ne.10.030187.003221. Annu Rev Neurosci. 1987. PMID: 2436546 Review. No abstract available. - Neuronal excitability: voltage-dependent currents and synaptic transmission.
Rutecki PA. Rutecki PA. J Clin Neurophysiol. 1992 Apr;9(2):195-211. J Clin Neurophysiol. 1992. PMID: 1375602 Review.
Cited by
- A method for the rapid exchange of solutions bathing excised membrane patches.
Brett RS, Dilger JP, Adams PR, Lancaster B. Brett RS, et al. Biophys J. 1986 Nov;50(5):987-92. doi: 10.1016/S0006-3495(86)83539-1. Biophys J. 1986. PMID: 3790698 Free PMC article. - Calcium-activated currents in cultured neurones from rat dorsal root ganglia.
Currie KP, Scott RH. Currie KP, et al. Br J Pharmacol. 1992 Jul;106(3):593-602. doi: 10.1111/j.1476-5381.1992.tb14381.x. Br J Pharmacol. 1992. PMID: 1324075 Free PMC article. - Calcium requirements for secretion in bovine chromaffin cells.
Augustine GJ, Neher E. Augustine GJ, et al. J Physiol. 1992 May;450:247-71. doi: 10.1113/jphysiol.1992.sp019126. J Physiol. 1992. PMID: 1432709 Free PMC article. - Role of calcium-activated potassium channels in transmitter release at the squid giant synapse.
Augustine GJ, Charlton MP, Horn R. Augustine GJ, et al. J Physiol. 1988 Apr;398:149-64. doi: 10.1113/jphysiol.1988.sp017035. J Physiol. 1988. PMID: 2455797 Free PMC article. - Ca(2+)-dependent and -independent components of transmitter release at the frog neuromuscular junction.
Tanabe N, Kijima H. Tanabe N, et al. J Physiol. 1992 Sep;455:271-89. doi: 10.1113/jphysiol.1992.sp019301. J Physiol. 1992. PMID: 1484356 Free PMC article.
References
- Proc Natl Acad Sci U S A. 1976 Jul;73(7):2520-3 - PubMed
- Proc Natl Acad Sci U S A. 1976 Aug;73(8):2918-22 - PubMed
- Nature. 1976 Nov 11;264(5582):170-2 - PubMed
- Biophys J. 1977 Oct;20(1):113-36 - PubMed
- J Physiol. 1977 Sep;271(1):119-33 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources